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Scaling Functions and WaveletsScaling Functions and Wavelets
Continuous time:Continuous time: φφ(t) Box function(t) Box function
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For this example:For this example:
φφ(t)  =  (t)  =  φφ(2t)  +  (2t)  +  φφ(2t (2t –– 1)1)

More generally:More generally:

φφ(t)  =  2(t)  =  2∑∑ hh00[k][k]φφ(2t (2t –– k)k)

φφ(t) is called a scaling function(t) is called a scaling function
The refinement equation couples the representations The refinement equation couples the representations 
of a continuousof a continuous--time function at two time scales.  The time function at two time scales.  The 
continuouscontinuous--time function is determined by a discretetime function is determined by a discrete--
time filter, htime filter, h00[n]!  For the above ([n]!  For the above (HaarHaar) example:) example:

hh00[0]  =  h[0]  =  h00[1]  =  ½     (a [1]  =  ½     (a lowpass lowpass filter)filter)

NN

k=0k=0

Refinement equationRefinement equation
oror

TwoTwo--scale differencescale difference
equationequation
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Note: (i) Solution to refinement equation may not Note: (i) Solution to refinement equation may not 
always exist.  If it does…always exist.  If it does…

(ii) (ii) φφ(t) has compact support i.e.(t) has compact support i.e.
φφ(t)  =  0 outside 0 (t)  =  0 outside 0 ≤≤ t t << N  N  
(comes from the FIR filter, h(comes from the FIR filter, h00[n])[n])

(iii) (iii) φφ(t) often has no closed form solution.(t) often has no closed form solution.
(iv) (iv) φφ(t) is unlikely to be smooth.(t) is unlikely to be smooth.

Constraint on hConstraint on h00[n]:[n]:

∫∫ φφ(t)(t)dt  dt  =  2 =  2 ∑∑ hh00[k] [k] ∫∫ φφ(2t (2t –– k)k)dtdt

=  2 =  2 ∑∑ hh00[k] [k] •• ½½ ∫∫ φφ((ττ)d)dττ

SoSo
∑∑ hh00[k]  =  1     Assumes [k]  =  1     Assumes ∫∫ φφ(t)(t)dt  dt  ≠≠ 00

NN

k=0k=0
NN

k=0k=0

NN

k=0k=0
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Now consider:Now consider:
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ww(t)(t) Square waveSquare wave
of finite length of finite length --
HaarHaar waveletwavelet
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+ sign flipped+ sign flipped

ww(t)  =(t)  = φφ(2t)  (2t)  -- φφ(2t (2t –– 1)1)
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More generally:More generally:

ww(t)  =  2(t)  =  2∑∑ hh11[k] [k] φφ(2t (2t –– k)            Wavelet equationk)            Wavelet equation

For the For the Haar Haar wavelet example:wavelet example:

hh11[0]  =  [0]  =  ½½ hh11[1]  =  [1]  =  --½½ (a (a highpass highpass filter)filter)

NN

k=0k=0
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Some observations for Some observations for Haar Haar scaling function and waveletscaling function and wavelet
1.1. Orthogonality Orthogonality of integer shifts (translates):of integer shifts (translates):
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φφ(t)(t)
φφ(t (t -- 1)1)

∫∫ φφ(t) (t) φφ(t (t –– k)k)dt  dt  ==





11 if k = 0if k = 0
0   otherwise0   otherwise

=     =     δδ[k][k]
SimilarlySimilarly

∫∫ w(t) w(t w(t) w(t –– k)k)dt  dt  =  =  δδ[k][k]

Reason:  no overlapReason:  no overlap
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2.2. Scaling function is orthogonal to wavelet:Scaling function is orthogonal to wavelet:
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++
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∫∫φφ(t) w(t)(t) w(t)dt dt =  0=  0
Reason:  +Reason:  +ve ve and and ––ve ve areas cancel each other.areas cancel each other.

++
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3.3. Wavelet is orthogonal across scales:Wavelet is orthogonal across scales:
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∫∫ w(t) w(2t)w(t) w(2t)dt dt =  0 ,    =  0 ,    ∫∫ w(t) w(2t w(t) w(2t –– 1)1)dt dt =  0=  0

Reason:  finer scale versions change sign while Reason:  finer scale versions change sign while 
coarse scale version remains constant.coarse scale version remains constant.

++

--
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Wavelet BasesWavelet Bases
Our goal is to use w(t), its scaled versions (dilations) Our goal is to use w(t), its scaled versions (dilations) 
and their shifts (translates) as building blocks for and their shifts (translates) as building blocks for 
continuouscontinuous--time functions, f(t).  Specifically, we are time functions, f(t).  Specifically, we are 
interested in the class of functions for which we can interested in the class of functions for which we can 
define the inner product:define the inner product:

<f(t) , g(t)>  =  <f(t) , g(t)>  =  ∫∫ f(t) g*(t)f(t) g*(t)dt   dt   << ∞∞

Such functions f(t) must have finite energy:Such functions f(t) must have finite energy:

||f(t)||||f(t)||22 =  =  ∫∫f(t)f(t)2 2 dtdt << ∞∞

and they are said to belong to the Hilbert space, Land they are said to belong to the Hilbert space, L22((ℜℜ).).

∞∞

--∞∞

∞∞

--∞∞
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Consider all dilations and translates of the Consider all dilations and translates of the Haar Haar wavelet:wavelet:
wwjj,k,k(t)  =  2(t)  =  2j/2 j/2 ww(2(2jjt t –– k)   ;  k)   ;  --∞∞ ≤≤ j j ≤≤ ∞∞

--∞∞ ≤≤ k k ≤≤ ∞∞

Normalization factor so that Normalization factor so that ||||wwjj,k,k(t)|| =  1(t)|| =  1

∫∫ wwjj,k,k(t) (t) wwJJ,K,K(t) (t) dt  dt  =  =  ∫∫ 22j/2j/2 ww(2(2jjt t –– k) . 2k) . 2J/2 J/2 ww(2(2JJt t –– K)K)dtdt

==

=  =  δδ[ j [ j –– J ] J ] δδ[ k [ k –– K ]K ]




1 if j = J and k = K1 if j = J and k = K
0 otherwise0 otherwise
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wwjkjk(t) form an (t) form an orthonormal orthonormal basisbasis for Lfor L22((ℜℜ).).

f(t)  =  f(t)  =  ∑∑ bbjkjk wwjkjk(t)  ;        (t)  ;        wwjkjk(t)  =  2(t)  =  2j/2 j/2 w(2w(2jjt t –– k)k)

bbjk   jk   =  =  ∫∫ f(t) f(t) wwjkjk(t) (t) dtdt

j,kj,k
∞∞

--∞∞
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Multiresolution Multiresolution AnalysisAnalysis

--∞∞
∞∞

Key ingredients:Key ingredients:
1.1. A sequence of embedded subspaces:A sequence of embedded subspaces:

{0} {0} ⊂⊂ …… ⊂⊂ VV--11 ⊂⊂ VV00 ⊂⊂ VV11 ⊂⊂ …… ⊂⊂ VVjj ⊂⊂ VVjj+1+1 ⊂⊂ …… ⊂⊂ LL22((ℜℜ))
LL22((ℜℜ)  =  all functions with finite energy)  =  all functions with finite energy

= {= {ƒƒ(t):  (t):  ∫∫ ƒƒ(t) (t) 22 dt dt < < ∞∞}         Hilbert}         Hilbert
Requirements:Requirements:

•• Completeness as j Completeness as j →→ ∞∞ .  If .  If ƒƒ(t) belongs to (t) belongs to 

LL22((ℜℜ) and ) and ƒƒjj(t) is the portion of (t) is the portion of ƒƒ(t) that lies in (t) that lies in 
VVjj, then       , then       ƒƒjj(t)   =   (t)   =   ƒƒ(t) (t) 

spacespace

jj→→ ∞∞
limlim
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•• Emptiness as j Emptiness as j →→ -- ∞∞

|| || ffjj(t) ||  =  0(t) ||  =  0

Restated as a condition on the subspaces:Restated as a condition on the subspaces:

∩∩ VVjj =  {0}=  {0}
j j = = -- ∞∞

Restated as a condition on the subspaces:Restated as a condition on the subspaces:

∪∪ VVjj =  L=  L2 2 ((ℜℜ))
j j = = -- ∞∞

∞∞

∞∞

limlim
j j →→ -- ∞∞



1616

2.2. A sequence of complementary subspaces, A sequence of complementary subspaces, WWjj, , 
such that     such that     VVjj + + WWjj = = VVjj+1+1

and               and               VVjj ∩∩ WWj j = {0}       (no overlap)= {0}       (no overlap)

This is written asThis is written as
VVjj ⊕⊕ WWjj =  =  VVjj+1+1 (Direct sum)(Direct sum)

Note: An orthogonal Note: An orthogonal multiresolution multiresolution will have will have WWjj
orthogonal to orthogonal to VVjj :  :  WWjj ?? VVjj ..
So So orthogonality orthogonality will ensure that will ensure that VVjj ∩∩ WWjj = {0}= {0}



1717

We thus haveWe thus have
VV11 =  V=  V00 ⊕⊕ WW00
VV22 =  V=  V11 ⊕⊕ WW11 =  V=  V00 ⊕⊕ WW00 ⊕⊕ WW11
VV3   3   =  V=  V22 ⊕⊕ WW22 =  V=  V00 ⊕⊕ WW00 ⊕⊕ WW11 ⊕⊕ WW22
MM

VVJJ =  V=  VJJ--11 ⊕⊕ WWJJ--11 =  V=  V00 ⊕⊕ ∑∑ WWjj
MM

LL22((ℜℜ)  =  V)  =  V00 ⊕⊕ ∑∑ WWjj

We can also write the recursion for j We can also write the recursion for j < 0< 0
VV00 =  V=  V--11 ⊕⊕ WW--11

=  V=  V--22 ⊕⊕ WW--22 ⊕⊕ WW--11
MM

=  V=  V--kk ⊕⊕ ∑∑ WWjj
MM

=  =  ∑∑ WWjj ⇒⇒ LL22((ℜℜ)  =  )  =  ∑∑ WWjj

JJ--11

j = 0j = 0

j = 0j = 0

∞∞

j = j = -- kk

-- 11

--11

j = j = --∞∞

∞∞

j = j = --∞∞
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3.3. A scaling (dilation) law:A scaling (dilation) law:
If If ƒƒ(t) (t) ∈∈ VVjj then then ƒƒ(2t) (2t) ∈∈ VVjj+1+1

4.4. A shift (translation) law:A shift (translation) law:
If If ƒƒ(t) (t) ∈∈ VVjj then   then   ƒƒ(t(t--k) k) ∈∈ VVj j k integerk integer

5.5. VV00 has a shifthas a shift--invariant basis, {invariant basis, {φφ(t(t--k) : k) : -- ∞∞ ≤≤ k k ≤≤ ∞∞}}
WW00 has a shifthas a shift--invariant basis, {w(tinvariant basis, {w(t--k) : k) : -- ∞∞ ≤≤ k k ≤≤ ∞∞}}

We expect that VWe expect that V11 =  V=  V00 + W+ W00 will have twice as will have twice as 
many basis functions as Vmany basis functions as V00 alone.alone.
First possibility:  {First possibility:  {φφ(t(t--k) , w(tk) , w(t--k) : k) : -- ∞∞ ≤≤ k k ≤≤ ∞∞}}
Second possibility:  use the scaling law i.e.Second possibility:  use the scaling law i.e.

if if φφ(t(t-- k)  k)  ∈∈ VV0 0 , then  , then  φφ(2t(2t-- k) k) ∈∈ VV11
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SoSo
VV11 has a shifthas a shift--invariant basis, {invariant basis, {vv2 2 φφ(2t(2t--k): k): -- ∞∞ ≤≤ k k ≤≤ ∞∞}}

Can we relate this basis for VCan we relate this basis for V11 to the basis for Vto the basis for V00??
We know thatWe know that

VV00 ⊂⊂ VV11

So any function in VSo any function in V00 can be written as a combination can be written as a combination 
of the basic functions for Vof the basic functions for V11..
In particular, since In particular, since φφ(t)  (t)  ∈∈ VV00, we can write, we can write

φφ(t) = 2(t) = 2∑∑ hh00[k] [k] φφ(2t (2t –– k)k)
kk

This is the Refinement Equation (a.k.a. the TwoThis is the Refinement Equation (a.k.a. the Two--
Scale Difference Equation or the Dilation Equation).Scale Difference Equation or the Dilation Equation).
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We also know thatWe also know that
WW0 0 =  V=  V11 –– VV00

SoSo
WW00 ⊂⊂ VV11

This means that any function in WThis means that any function in W00 can also be written can also be written 
as a combination of the basic functions for Vas a combination of the basic functions for V11.  .  
Since w(t) Since w(t) ∈∈ WW0,0, we can writewe can write

w(t)  =  2w(t)  =  2∑∑ hh11[k] [k] φφ(2t (2t –– k)k)
kk

WaveletWavelet
EquationEquation
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MultiresolutionMultiresolution RepresentationsRepresentations
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MultiresolutionMultiresolution RepresentationsRepresentations
Geometry:Geometry:

Mesh courtesy of Igor Guskov (Caltech)


