Course 18.327 and 1.130
Wavelets and Filter Banks

Signal and Image Processing: finite
length signals; boundary filters and

boundary wavelets; wavelet
compression algorithms.




Finite-Length Signals
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1) zero-padding
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2) Periodic Extension
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What is the eigenvector for the circulant matrix?
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3) Symmetric Extension

1) Whole point symmetry — when filter is whole
point symmetric.

2) Half point symmetry —when filter is half point
symmetric.

e.g. Whole point symmetry: filter and signal
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e.g. whole point symmetry — filter,
half-point symmetry - signal
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Downsampling a whole-point symmetric signal with
even length N

at the left boundary:

X | ¥ = still whole-point symmetric after | 2.
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at the right boundary:

| | ‘ — half-point symmetric after | 2.

N-1
odd

E.g. 9/7 filter: whole-point symmetric —N/2

use the above extension for signal = N— exactly
—N/2




Downsample a half-point symmetric signal

+ i = nothing guaranteed
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Linear-phase filters
Hw) = A(w)e'we

1) half-point symmetric, a = fraction

2) whole-point symmetric, a = Integer
Symmetric extension of finite-length signal

X(w) = B(w)e'wh



The output:
Y(w) = H(w)X(w)
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The above extensions ensure the continuity of function
values at boundaries, but not the continuity of
derivatives at boundaries.




4) Polynomial Extrapolation (not useful in image
processing)

 Useful for PDE with boundary conditions.
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PDE
f(x) = Zk: C@x — k)

Assume f(x) has polynomial behavior near boundaries
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Using the computed a;’s, we can extrapolate,
o,

eg. C; = [p2; Wiy - pPil | -

p-1

DCT idea of symmetric extension

cf. DFT X[K] = znx[n]e-i%n

complex-valued Want real-valued results.
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DFT of this extended signal:
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