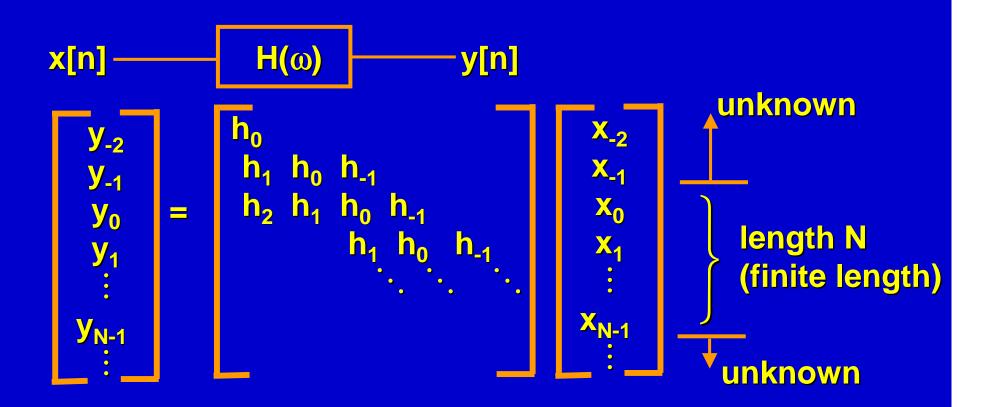
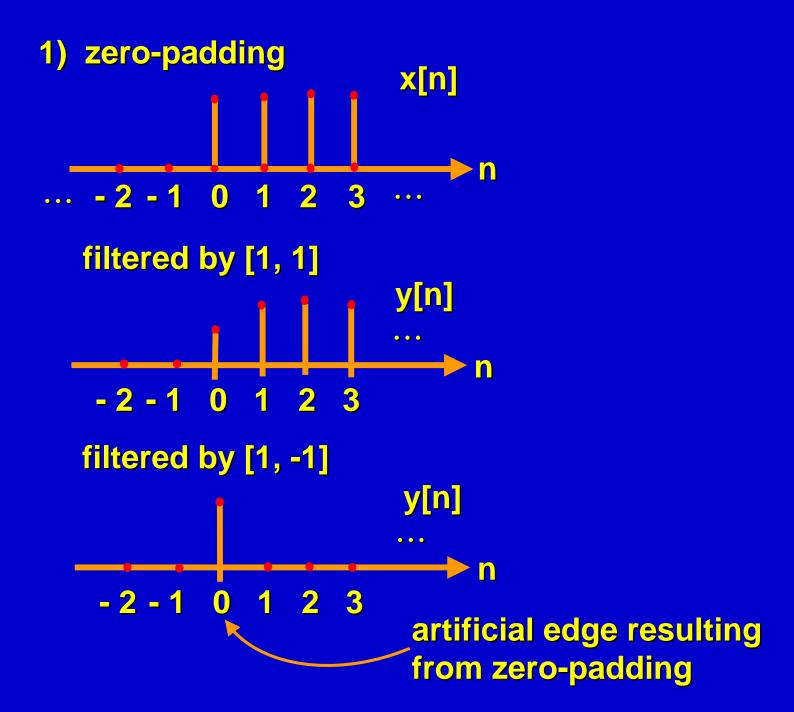
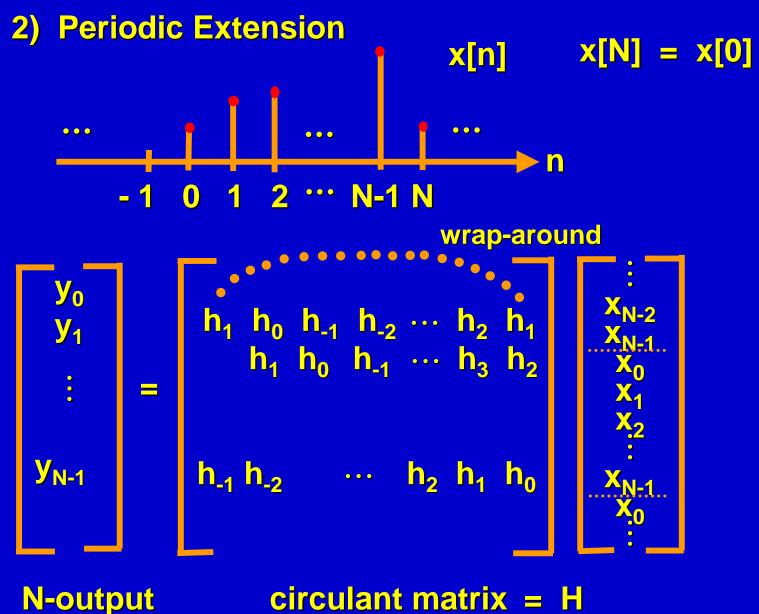
Course 18.327 and 1.130 Wavelets and Filter Banks

Signal and Image Processing: finite length signals; boundary filters and boundary wavelets; wavelet compression algorithms.

Finite-Length Signals







circulant matrix = H

What is the eigenvector for the circulant matrix?

[1
$$e^{i\omega}$$
 $e^{i2\omega}$ \cdots $e^{i(N-1)\omega}$] T

We need

$$e^{iN\omega} = 1 = e^{i0\omega}$$

$$\therefore N\omega = 2\pi k ,$$

$$\omega = \frac{2\pi k}{N}$$

discrete set of ω's

For the 0th row,

$$H[k] = \sum_{n=0}^{N-1} h[n] e^{-i\frac{2\pi k}{N}n}$$

HF = FA
$$\Lambda$$
 contains the Fourier coefficient Λ coe

A contains the Fourier coefficients

$$\sum_{n} \sum_{\ell} h[n - \ell] x[\ell] e^{-i \frac{2\pi k}{N} n} = H[k] X[k]$$

If
$$x[\ell] = e^{i\frac{2\pi k_0}{N}\ell}$$
 $\Rightarrow X[k] = \delta[k - k_0]$
 $\Rightarrow H[k]X[k] = H[k_0]X[k]$

- 3) Symmetric Extension
 - 1) Whole point symmetry when filter is whole point symmetric.
 - 2) Half point symmetry when filter is half point symmetric.
- e.g. Whole point symmetry: filter and signal

e.g. whole point symmetry – filter, half-point symmetry - signal

$$\begin{bmatrix} h_1x_2 + h_0x_1 + h_1x_0 \\ h_1x_1 + h_0x_0 + h_1x_0 \\ h_1x_0 + h_0x_0 + h_1x_1 \\ h_1x_0 + h_0x_1 + h_1x_2 \end{bmatrix} = \begin{bmatrix} h_1 & h_0 & h_1 \\ h_1 & h_0 & h_1 \\ h_1 & h_0 & h_1 \\ \vdots & \ddots & \ddots & \ddots \\ x_0 & \vdots & \ddots & \ddots \\ x_1 & \vdots & \ddots & \ddots \\ x_1 & \vdots & \ddots & \ddots \\ x_1 & \vdots & \ddots & \ddots \\ x_2 & \vdots & \ddots & \ddots \end{bmatrix}$$

Half point symmetry

Whole point symmetry

Downsampling a whole-point symmetric signal with even length N at the left boundary:

$$\Rightarrow$$
 still whole-point symmetric after \downarrow 2.

at the right boundary:

E.g. 9/7 filter: whole-point symmetric use the above extension for signal $\Rightarrow N$ —

exactly N/2

Downsample a half-point symmetric signal

Linear-phase filters

$$H(\omega) = A(\omega)e^{-i\omega\alpha}$$

- 1) half-point symmetric, $\alpha = \text{fraction}$
- 2) whole-point symmetric, $\alpha = integer$

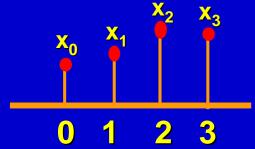
Symmetric extension of finite-length signal

$$X(\omega) = B(\omega)e^{-i\omega\beta}$$

The output:

The above extensions ensure the continuity of function values at boundaries, but not the continuity of derivatives at boundaries.

- 4) Polynomial Extrapolation (not useful in image processing)
 - Useful for PDE with boundary conditions.



4 coefficients ⇒ fits up to 3rd order polynomials.

$$a + bn + cn^2 + dn^3 = x(n)$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 2^2 & 2^3 \\ 1 & 3 & 3^2 & 3^3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Then,
$$x_{-1} = \begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix} A^{-1} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

PDE

$$f(x) = \sum_{k} c_{k} \phi(x - k)$$

Assume f(x) has polynomial behavior near boundaries

$$\sum_{i=0}^{p-1} \alpha_i x^i = f(x) = \sum_k c_k \phi(x - k)$$

$$\{\phi (\bullet - k)\} \text{ orthonormal}$$

$$\Rightarrow \sum_{i=0}^{p-1} \alpha_i \int \phi(x - k) x^i dx = c_k$$

$$\mu_k^i$$

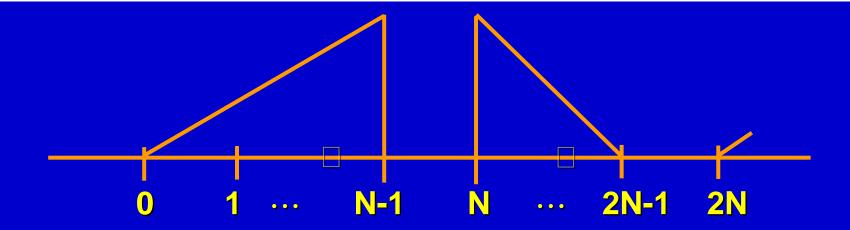
$$\begin{bmatrix} \mu_0^0 & \mu_0^1 & \cdots & \mu_0^{p-1} \\ \mu_0^0 & \mu_1^1 & \mu_1^2 & \cdots \\ \vdots & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_{p-1} \end{bmatrix} = \begin{bmatrix} \mathbf{c}_0 \\ \mathbf{c}_1 \\ \vdots \\ \mathbf{c}_{p-1} \end{bmatrix}$$

Using the computed α_i 's, we can extrapolate,

e.g.
$$\mathbf{c}_{-1} = [\mu_{-1}^0 \ \mu_{-1}^1 \ \cdots \ \mu_{-1}^{p-1}] \begin{vmatrix} \alpha_0 \\ \vdots \\ \alpha_{p-1} \end{vmatrix}$$

DCT idea of symmetric extension

cf. DFT
$$X[k] = \sum_{n} x[n]e^{-i\frac{2\pi k}{N}n}$$
 Complex-valued Want real-valued results.



DFT of this extended signal:

$$\sum_{n=0}^{N-1} x[n]e^{-i\frac{2\pi k}{2N}n} + \sum_{n=N}^{2N-1} x[2N-1-n]e^{-i\frac{2\pi k}{2N}n}$$

$$\begin{split} \sum_{m=0}^{N-1} x[m] e^{-i\frac{2\pi k}{2N}} (2N-1-m) \\ &= \sum_{n=0}^{N-1} x[n] \left\{ e^{-i\frac{2\pi k}{2N}n} + e^{-i\frac{2\pi k}{2N}(2N-1-n)} \right\} \\ X(k) \quad c_k \sum_{n=0}^{N-1} \sqrt{2} x[n] cos \, \frac{\pi k}{N} (n+1/2) \, \cdots \, DCT - II \, \, used \, in \, JPEG \\ c_k \quad &= \begin{cases} 1/\sqrt{2} & k=0 \\ 1 & k=1,2,...,N-1 \end{cases} \end{split}$$