Here is an <u>end-of-term qift</u> meant to assist you in your struggles with that resistor cube from Problem 36 yet more explicitly than via my old program **QUICK** that I already appended as a postscript to our 2-D resistor mesh from Problem 30. You are most welcome to employ this aptly named **QUICK3** as a part of your own solution ... but, if so, only with the polite requirement that you include signs that you had at least to some extent actually comprehended and <u>also goof-tested</u> its marvelously rapid workings!

ΑТ

Program QUICK3

```
implicit double precision (a-h,o-z)
         dimension S2(0:99), WT(0:99)
         pi = 4 * atan(1.0d0)
         do 59 Nsize=2,100
            do 19 i=0, Nsize-1
              arg = pi * i / (2.0d0 * Nsize)
              S2(i) = sin(arg) * sin(arg)
              WT(i) = 2 * cos(arg) * cos(arg) / Nsize
19
            continue
            WT(0) = 1.0d0 / Nsize
c ... Here 4 * S2(i) supplies 1-D eigenVALUES like 0,1,3 for Nsize=3,
      or 0, 2-sqrt(2), 2, and 2+sqrt(2) for Nsize=4, whereas WT(i) reports the square of the vital first (or last) element of each
C
       corresponding 1-D eigenVECTOR, now already divided by the sum
C
       ssq = Nsize or Nsize/2 of the squares of all of its components.
            Rohms = 0
            do 49 K=0, Nsize-1
              do 39 L=0, Nsize-1
                 do 29 M=0, Nsize-1
                   KLM = K + L + M
                   if (KLM.eq.2*(KLM/2)) go to 29
c ... Yes, SKIP any composite K,L,M eigenvector for which the index
c    sum K+L+M = even , since its first and last components would
c    be identical, and it would contribute nothing to the sum below.
                   Wcomp = WT(K) * WT(L) * WT(M)
                   eigen = S2(K) + S2(L) + S2(M)
                   Rplus = Wcomp / eigen
                   Rohms = Rohms + Rplus
                   if (Nsize.eq.4) then
                      write (*,25) K,L,M, Wcomp, eigen, Rplus, Rohms
25
                      format (10x, 3i5, 3x, 4f12.6)
                    endif
29
                 continue
39
               continue
49
            continue
            write (*,55) Nsize, Rohms
            format (20x, 'Nsize =', i6, 5x, 'Rohms =', f20.15)
55
59
          continue
```