Mon 05 Nov 01 ONE e = 0.6 KEPLER ORBIT ?! according to SE, IE and RK4, when employing the indicated numbers of \underline{equal} steps PS: If you would like to check the performance of your SE, IE and/or RK4 integrators for the 4-variable Kepler system $$dx/dt = u$$ $x(0) = -1.6$ $dy/dt = v$ $y(0) = 0$ $du/dt = -x / (x^2 + y^2)^{3/2}$ with $u(0) = 0$ $dv/dt = -y / (x^2 + y^2)^{3/2}$ $v(0) = -0.5$ illustrated in the front, here are 6-decimal versions of my own final values of x,y, u,v at $t=2\pi$ obtained using each of the methods and (deliberately insufficient) numbers of steps N indicated: | N | xfin | yfin | ufin | vfin | |------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------| | Simple Euler: | | | | | | 1000
2000
4000 | -1.915385
-1.801689
-1.714675 | 0.615995
0.323027
0.164835 | -0.352637
-0.211429
-0.117051 | -0.333777
-0.422452
-0.464083 | | Improved Euler | (= average | of the end | slopes): | | | 50
100
200 | -1.756273
-1.663363
-1.611030 | 0.914366
0.238959
0.052969 | -0.368226
-0.110471
-0.022515 | -0.276509
-0.467569
-0.496202 | | 4th-order Runge-Kutta: | | | | | | 20
30
40 | -0.600508
-1.449241
-1.562383 | -0.541975
-0.163156
-0.050097 | 0.996085
0.140100
0.036481 | -0.362168
-0.531470
-0.509762 | | versus | -1.6 | 0.0 | 0.0 | -0.5 | Of course those numbers do not yet match the initial quadruplet as they "ought" to have ... but bear in mind that all these calculations employed double precision (= approx. 14 significant digits) internally. Thus any big discrepancies here must have arisen from the step sizes dt having been chosen too coarsely, and **not** from round-off errors. And yes, the $\underline{hodograph}$ (= locus in the u,v velocity space) for any Keplerian orbit should be strictly a **CIRCLE** !!