
Mon 05 Nov 01

ONE e = 0.6 KEPLER ORBIT ?!

according to SE, IE and RK4, when employing the indicated numbers of \underline{equal} steps

PS: If you would like to check the performance of your SE, IE and/or RK4 integrators for the 4-variable Kepler system

$$dx/dt = u$$
 $x(0) = -1.6$
 $dy/dt = v$ $y(0) = 0$
 $du/dt = -x / (x^2 + y^2)^{3/2}$ with $u(0) = 0$
 $dv/dt = -y / (x^2 + y^2)^{3/2}$ $v(0) = -0.5$

illustrated in the front, here are 6-decimal versions of my own final values of x,y, u,v at $t=2\pi$ obtained using each of the methods and (deliberately insufficient) numbers of steps N indicated:

N	xfin	yfin	ufin	vfin
Simple Euler:				
1000 2000 4000	-1.915385 -1.801689 -1.714675	0.615995 0.323027 0.164835	-0.352637 -0.211429 -0.117051	-0.333777 -0.422452 -0.464083
Improved Euler	(= average	of the end	slopes):	
50 100 200	-1.756273 -1.663363 -1.611030	0.914366 0.238959 0.052969	-0.368226 -0.110471 -0.022515	-0.276509 -0.467569 -0.496202
4th-order Runge-Kutta:				
20 30 40	-0.600508 -1.449241 -1.562383	-0.541975 -0.163156 -0.050097	0.996085 0.140100 0.036481	-0.362168 -0.531470 -0.509762
versus	-1.6	0.0	0.0	-0.5

Of course those numbers do not yet match the initial quadruplet as they "ought" to have ... but bear in mind that all these calculations employed double precision (= approx. 14 significant digits) internally. Thus any big discrepancies here must have arisen from the step sizes dt having been chosen too coarsely, and **not** from round-off errors.

And yes, the $\underline{hodograph}$ (= locus in the u,v velocity space) for any Keplerian orbit should be strictly a **CIRCLE** !!