
Chapter 3

Interpolation

Interpolation is the problem of fitting a smooth curve through a given set of
points, generally as the graph of a function. It is useful at least in data analy-
sis (interpolation is a form of regression), industrial design, signal processing
(digital-to-analog conversion) and in numerical analysis. It is one of those
important recurring concepts in applied mathematics. In this chapter, we
will immediately put interpolation to use to formulate high-order quadrature
and differentiation rules.

3.1 Polynomial interpolation

Given N + 1 points xj ∈ R, 0 ≤ j ≤ N , and sample values yj = f(xj) of
a function at these points, the polynomial interpolation problem consists in
finding a polynomial pN(x) of degree N which reproduces those values:

yj = pN(xj), j = 0, . . . , N.

In other words the graph of the polynomial should pass through the points
(xj, y

N
j). A degree-N polynomial can be written as pN(x) =

∑
n=0 a

n
nx for

some coefficients a0, . . . , aN . For interpolation, the number of degrees of
freedom (N + 1 coefficients) in the polynomial matches the number of points
where the function should be fit. If the degree of the polynomial is strictly
less than N , we cannot in general pass it through the points (xj, yj). We
can still try to pass a polynomial (e.g., a line) in the “best approximate
manner”, but this is a problem in approximation rather than interpolation;
we will return to it later in the chapter on least-squares.

1

CHAPTER 3. INTERPOLATION

Let us first see how the interpolation problem can be solved numerically
in a direct way. Use the expression of pN into the interpolating equations
yj = pN(xj): ∑N

a xnn j = yj, j = 0, . . . , N.
n=0

In these N + 1 equations indexed by j, the unknowns are the coefficients
a0, . . . , aN . We are in presence of a linear system

N

V a = y, ⇔
∑

Vjnan = yj,
n=0

with V the so-called Vandermonde matrix, Vjn = xnj , i.e.,1 x N
0 · · · x0

V =
1 x1 · · · xN1


. . .
1 xN · · · xNN


We can then use a numerical software like Matlab


to construct the vector of

abscissas xj, the right-hand-side of values yj, the V matrix, and numerically
solve the system with an instruction like a = V \y (in Matlab). This gives
us the coefficients of the desired polynomial. The polynomial can now be
plotted in between the grid points xj (on a finer grid), in order to display
the interpolant.

Historically, mathematicians such as Lagrange and Newton did not have
access to computers to display interpolants, so they found explicit (and el-
egant) formulas for the coefficients of the interpolation polynomial. It not
only simplified computations for them, but also allowed them to understand
the error of polynomial interpolation, i.e., the difference f(x) − pN(x). Let
us spend a bit of time retracing their steps. (They were concerned with
applications such as fitting curves to celestial trajectories.)

We’ll define the interpolation error from the uniform (L∞) norm of the
difference f − pN :

‖f − pN‖ := max∞
x
|f(x)− pN(x)|,

where the maximum is taken over the interval [x0, xN].

2

3.1. POLYNOMIAL INTERPOLATION

Call PN the space of real-valued degree-N polynomials:

N

PN = {
∑

anx
n : an

n=0

∈ R}.

Lagrange’s solution to the problem of polynomial interpolation is based
on the following construction.

Lemma 1. (Lagrange elementary polynomials) Let {xj, j = 0, . . . , N} be a
collection of disjoint numbers. For each k = 0, . . . , N , there exists a unique
degree-N polynomial Lk(x) such that

Lk(xj) = δjk =

{
1 if j = k;
0 if j = k.

Proof. Fix k. Lk has roots at xj for j = k, so Lk must be of the form1

Lk(x) = C
∏

(x
j=k

− xj).

Evaluating this expression at x = xk, we get

1 = C
∏ 1

(xk − xj) ⇒ C = ∏ .
j=k(xk − xj)j=k

Hence the only possible expression for Lk is∏∏ j=k(x
Lk(x) =

− xj)
.

j=k(xk − xj)

These elementary polynomials form a basis (in the sense of linear algebra)
for expanding any polynomial interpolant pN .

1That’s because, if we fix j, we can divide Lk(x) by (x − xj), j = k. We obtain
Lk(x) = (x − xj)q(x) + r(x), where r(x) is a remainder of lower order than x − xj , i.e.,
a constant. Since Lk(xj) = 0 we must have r(x) = 0. Hence (x − xj) must be a factor
of Lk(x). The same is true of any (x − xj) for j = k. There are N such factors, which
exhausts the degree N . The only remaining degree of freedom in Lk is the multiplicative
constant.

6

6

6

6 6

6

6

6

6

3

CHAPTER 3. INTERPOLATION

Theorem 4. (Lagrange interpolation theorem)
Let {xj, j = 0, . . . , N} be a collection of disjoint real numbers. Let {yj, j =

0, . . . , N} be a collection of real numbers. Then there exists a unique pN ∈ PN
such that

pN(xj) = yj, j = 0, . . . , N.

Its expression is
N

pN(x) =
∑

ykLk(x), (3.1)
k=0

where Lk(x) are the Lagrange elementary polynomials.

Proof. The justification that (3.1) interpolates is obvious:

N

pN(xj) =
∑ N

ykLk(xj) =
∑

ykLk(xj) = yj.
k=0 k=0

It remains to see that pN is the unique interpolating polynomial. For this
purpose, assume that both pN and qN take on the value yj at xj. Then
rN = pN − qN is a polynomial of degree N that has a root at each of the
N +1 points x0, . . . , xN . The fundamental theorem of algebra, however, says
that a nonzero polynomial of degree N can only have N (complex) roots.
Therefore, the only way for rN to have N + 1 roots is that it is the zero
polynomial. So pN = qN .

By definition,
N

pN(x) =
∑

f(xk)Lk(x)
k=0

is called the Lagrange interpolation polynomial of f at xj.

Example 7. Linear interpolation through (x1, y1) and (x2, y2):

x x
L1(x) =

− 2 x x1
, L2(x) =

−
,

x1 − x2 x2 − x1

p1(x) = y1L1(x) + y2L2(x)

y2
=

− y1 y1x2
x+

− y2x1

x2 − x1 x2 − x1

y2
= y1 +

− y1
(x .

x2 − x
− x1)

1

4

3.1. POLYNOMIAL INTERPOLATION

Example 8. (Example (6.1) in Suli-Mayers) Consider f(x) = ex, and inter-
polate it by a parabola (N = 2) from three samples at x0 = −1, x1 = 0, x2 = 1.
We build

(x)(
L0(x =

− x1 x
)

− x2) 1
= x(x 1)

(x0 x
−

− 1)(x0 − x2) 2

Similarly,
1

L1(x) = 1− x2, L2(x) = x(x+ 1).
2

So the quadratic interpolant is

p2(x) = e−1L0(x) + e0L1(x) + e1L2(x),

= 1 + sinh(1)x+ (cosh(1)− 1)x2,

' 1 + 1.1752x+ 0.5431x2.

Another polynomial that approximates ex reasonably well on [−1, 1] is the
Taylor expansion about x = 0:

x2

t2(x) = 1 + x+ .
2

Manifestly, p2 is not very different from t2.
(Insert picture here)

Let us now move on to the main result concerning the interpolation error
of smooth functions.

Theorem 5. Let f ∈ CN+1[a, b] for some N > 0, and let {xj : j = 0, . . . , N}
be a collection of disjoint reals in [a, b]. Consider pN the Lagrange interpola-
tion polynomial of f at xj. Then for every x ∈ [a, b] there exists ξ(x) ∈ [a, b]
such that

f (N+1)(ξ(x))
f(x)− pN(x) = πN+1(x),

(N + 1)!

where
N+1

πN+1(x) =
∏

(x j

=1

− x).
j

An estimate on the interpolation error follows directly from this theorem.
Set

MN+1 = max (

x [a,b]
|f N+1)(x)

∈
|

5

CHAPTER 3. INTERPOLATION

(which is well defined since f (N+1) is continuous by assumption, hence reaches
its lower and upper bounds.) Then

M|f(x)− pN(x)| ≤ N+1

(N + 1)!
|πN+1(x)|

In particular, we see that the interpolation error is zero when x = xj for
some j, as it should be.

Let us now prove the theorem.

Proof. (Can be found in Suli-Mayers, Chapter 6)

In conclusion, the interpolation error:

• depends on the smoothness of f via the high-order derivative f (N+1);

• has a factor 1/(N + 1)! that decays fast as the order N →∞;

• and is directly proportional to the value of πN+1(x), indicating that the
interpolant may be better in some places than others.

The natural follow-up question is that of convergence: can we always
expect convergence of the polynomial interpolant as N → ∞? In other
words, does the factor 1/(N + 1)! always win over the other two factors?

Unfortunately, the answer is no in general. There are examples of very
smooth (analytic) functions for which polynomial interpolation diverges, par-
ticularly so near the boundaries of the interplation interval. This behavior
is called the Runge phenomenon, and is usually illustrated by means of the
following example.

Example 9. (Runge phenomenon) Let f(x) for x ∈ [−5, 5]. Interpolate it
at equispaced points xj = 10j/N , where j = −N/2, . . . , N/2 and N is even.
It is easy to check numerically that the interpolant diverges near the edges of
[−5, 5], as N →∞. See the Trefethen textbook on page 44 for an illustration
of the Runge phenomenon.

(Figure here)

If we had done the same numerical experiment for x ∈ [−1, 1], the inter-
polant would have converged. This shows that the size of the interval matters.
Intuitively, there is divergence when the size of the interval is larger than the
”features”, or characteristic length scale, of the function (here the width of
the bump near the origin.)

6

3.2. POLYNOMIAL RULES FOR INTEGRATION

The analytical reason for the divergence in the example above is due in
no small part to the very large values taken on by πN+1(x) far away from the
origin — in contrast to the relatively small values it takes on near the origin.
This is a problem intrinsic to equispaced grids. We will be more quantitative
about this issue in the section on Chebyshev interpolants, where a remedy
involving non-equispaced grid points will be explained.

As a conclusion, polynomial interpolants can be good for small N , and
on small intervals, but may fail to converge (quite dramatically) when the
interpolation interval is large.

3.2 Polynomial rules for integration

In this section, we return to the problem of approximating
∫ b
u(x)dx by

a

a weighted sum of samples u(xj), also called a quadrature. The plan is
to form interpolants of the data, integrate those interpolants, and deduce
corresponding quadrature formulas. We can formulate rules of arbitrarily
high order this way, although in practice we almost never go beyond order 4
with polynomial rules.

3.2.1 Polynomial rules

Without loss of generality, consider the local interpolants of u(x) formed near
the origin, with x0 = 0, x1 = h and x−1 = −h. The rectangle rule does not
belong in this section: it is not formed from an interpolant.

• The trapezoidal rule, where we approximate u(x) by a line joining
(0, u(x0)) and (h, u(x1)) in [0, h]. We need 2 derivatives to control the
error:

u′′(ξ(x))
u(x) = p1(x) + x(x

2
− h),

p1(x) = u(0)L0(x) + u(h)L1(x),

h
L0(x) =

− x x
, L1(x) = ,∫ h h

h

L0(x)dx =

∫ h

L1(x)dx = h/2, (areas of triangles)
0 ∫ 0

h u′′(ξ(x))
x

0

| (x
2

− h)| dx ≤ C max
ξ
|u′′(ξ)|h3.

7

CHAPTER 3. INTERPOLATION

The result is ∫ h u(0) + u(h)
u(x) dx = h

0

(
+O(h3).

2

)
As we have seen, the terms combine as∫ 1 N

h
−1

h
u(x) dx = u(x0) + h

∑
u(xj (

2
−1) + u(xN) +O h2).

0 2
j=1

• Simpson’s rule, where we approximate u(x) by a parabola through
(−h, u(x 1)), (0, u(x0)), and (h, u(x1)) in [−h, h]. We need three deriva-−
tives to control the error:

u′′′(ξ(x))
u(x) = p2(x) + (x+ h)x(x

6
− h),

p2(x) = u(−h)L 1(x) + u(0)L0(x) + u(h)L1(x),−

x(x h) (x+ h)(x h) (x+ h)x
L 1(x) =

−
, L0(x) =

−
, L1(x) = ,−

2h2 −h2 2h2∫ h

L 1(x)dx =

∫ h h

L1(x)dx = h/3,

∫
L0(x)dx = 4h/3,

−h
−∫ −h −h
h u′′′(ξ(x))| (x+ h)x(x h) dx C max u′′′(ξ) h4.

ξ0 6
− | ≤ | |

The result is∫ h

u(x) dx = h
−h

(
u(−h) + 4u(0) + u(h)

)
+O(h4).

3

The composite Simpson’s rule is obtained by using this approximation
on [0, 2h] ∪ [2h, 4h] ∪ . . . [1− 2h, 1], adding the terms, and recognizing
that the samples at 2nh (except 0 and 1) are represented twice.∫ 1 (

u(0) + 4u(h) + 2u(2h) + 4u(3h) + . . .+ 2u(1 2h) + 4u(1 h) + u(1)
u(x)dx = h

− −
0 3

)
+

It turns out that the error is in fact O(h5) on [−h, h], and O(h4) on
[0, 1], a result that can be derived by using symmetry considerations
(or canceling the terms from Taylor expansions in a tedious way.) For
this, we need u to be four times differentiable (the constant in front of
h5 involves u′′′′.)

O(h3).

8

3.3. POLYNOMIAL RULES FOR DIFFERENTIATION

The higher-order variants of polynomial rules, called Newton-Cotes rules,
are not very interesting because the Runge phenomenon kicks in again. Also,
the weights (like 1,4,2,4,2, etc.) become negative, which leads to unacceptable
error magnification if the samples of u are not known exactly.

Piecewise spline interpolation is not a good choice for numerical integra-
tion either, because of the two leftover degrees of freedom, whose arbitrary
choice affects the accuracy of quadrature in an unacceptable manner. (We’ll
study splines in a later section.)

We’ll return to (useful!) integration rules of arbitrarily high order in the
scope of spectral methods.

3.3 Polynomial rules for differentiation

A systematic way of deriving finite difference formulas of higher order is to
view them as derivatives of a polynomial interpolant passing through a small
number of points neighboring xj. For instance (again we use −h, 0, h as
reference points without loss of generality):

• The forward difference at 0 is obtained from the line joining (0, u(0))
and (h, u(h)):

p1(x) = u(0)L0(x) + u(h)L1(x),

h− x x
L0(x) = , L1(x) = ,

h h

u(h) u(0)
p′1(0) =

−
.

h

We already know that u′(0)− p′1(0) = O(h).

• The centered difference at 0 is obtained from the line joining (−h, u(−h))
and (h, u(h)) (a simple exercise), but it is also obtained from differen-
tiating the parabola passing through the points (−h, u(−h)), (0, u(0)),
and (h, u(h)). Indeed,

p2(x) = u(−h)L 1(x) + u(0)L0(x) + u(h)L− 1(x),

x(x− h) (x+ h)(x) (x+
L 1(x) = L0(x) =

− h h)x
, , L1(x) = ,−

2h2 −h2 2h2

2x h 2x
p′2(x) = u(

− 2x+ h−h) + u(0) + u(h) ,
2h2 −h2 2h2

9

CHAPTER 3. INTERPOLATION

u(h) (
p′2 =

− u
(0)

−h)
.

2h

We already know that u′(0)− p′2(0) = O(h2).

• Other examples can be considered, such as the centered second differ-
ence (-1 2 -1), the one-sided first difference (-3 4 -1), etc.

Differentiating one-sided interpolation polynomials is a good way to ob-
tain one-sided difference formulas, which comes in handy at the boundaries
of the computational domain. The following result establishes that the order
of the finite difference formula matches the order of the polynomial being
differentiated.

Theorem 6. Let f ∈ CN+1[a, b], {xj, j = 0, . . . , N} some disjoint points,
and pN the corresponding interpolation polynomial. Then

f (N+1)(ξ)
f ′(x)− p′N(x) = πN

∗ (x),
N !

for some ξ ∈ [a, b], and where πN
∗ (x) = (x − η1) . . . (x − ηN) for some ηj ∈

[xj 1, x− j].

The proof of this result is an application of Rolle’s theorem that we leave
out. (It is not simply a matter of differentiating the error formula for poly-
nomial interpolation, because we have no guarantee on dξ/dx.)

A consequence of this theorem is that the error in computing the deriva-
tive is a O(hN) (which comes from a bound on the product πN

∗ (x).)
It is interesting to notice, at least empirically, that the Runge’s phe-

nomenon is absent when the derivative is evaluated at the center of the
interval over which the interpolant is built.

3.4 Piecewise polynomial interpolation

The idea of piecewise polynomial interpolation, also called spline interpola-
tion, is to subdivide the interval [a, b] into a large number of subintervals
[xj , x], and to use low-degree polynomials over each subintervals. This−1 j

helps avoiding the Runge phenomenon. The price to pay is that the inter-
polant is no longer a C∞ function – instead, we lose differentiability at the
junctions between subintervals, where the polynomials are made to match.

10

3.4. PIECEWISE POLYNOMIAL INTERPOLATION

If we use polynomials of order n, then the interpolant is piecewise C∞,
and overall Ck, with k ≤ n− 1. We could not expect to have k = n, because
it would imply that the polynomials are identical over each subinterval. We’ll
see two examples: linear splines when n = 1, and cubic splines when n = 3.
(We have seen in the homework why it is a bad idea to choose n = 2.)

3.4.1 Linear splines

We wish to interpolate a continuous function f(x) of x ∈ [a, b], from the
knowledge of f(xj) at some points xj, j = 0, . . . , N , not necessarily equis-
paced. Assume that x0 = a and xN = b. The piecewise linear interpolant
is build by tracing a straight line between the points (xj−1, f(xj−1)) and
(xj, f(xj))); for j = 1, . . . , N the formula is simply

xj 1 x x xj 1
sL(x) =

− −
f(xj 1) +

− −
f(xj), x [xj , x].

xj
−

x j

∈
− xj 1 j − x 1

−1 j
− −

In this case we see that sL(x) is a continuous function of x, but that its
derivative is not continuous at the junction points, or nodes xj.

If the function is at least twice differentiable, then piecewise linear inter-
polation has second-order accuracy, i.e., an error O(h2).

Theorem 7. Let f ∈ C2[a, b], and let h = maxj=1,...,N(xj − xj−1) be the grid
diameter. Then

h2

‖f − sL‖L∞[a,b] ≤
8
‖f ′′‖L∞[a,b].

Proof. Let x ∈ [xj 1, xj] for some j = 1, . . . , N . We can apply the basic result−
of accuracy of polynomial interpolation with n = 1: there exists ξ ∈ [xj−1, xj]
such that

1
f(x)− sL(x) = f ′′(ξ) (x− xj x−1)(x− j), x

2
∈ [xj−1, xj].

Let hj = xj − xj−1. It is easy to check that the product (x xj 1)(x xj)
x

takes its maximum value at the midpoint j−1+xj
− − −

, and that the value is h2
2 j/4.

We then have

h2

|f(x)− sL(x)| ≤ j
max |f ′′(ξ)

8 ξ∈[xj−1,xj]
|, x ∈ [xj−1, xj].

The conclusion follows by taking a maximum over j.

11

CHAPTER 3. INTERPOLATION

We can express any piecewise linear interpolant as a superposition of
“tent” basis functions φk(x):

sL(x) =
∑

ckφk(x),
k

where φk(x) is the piecewise linear function equal to 1 at x = xk, and equal
to zero at all the other grid points xj, j = k. Or in short, φk(xj) = δjk. On
an equispaced grid xj = jh, an explicit formula is

1
φk(x) = S(1)(x− xk),

h

where
S(1)(x) = x+ − 2(x− h)+ + (x− 2h)+,

and where x+ denotes the positive part of x (i.e., x if x ≥ 0, and zero if
x < 0.)

Observe that we can simply take ck = f(xk) above. The situation will be
more complicated when we pass to higher-order polynomials.

3.4.2 Cubic splines

Let us now consider the case n = 3 of an interpolant which is a third-order
polynomial, i.e., a cubic, on each subinterval. The most we can ask is that the
value of the interpolant, its derivative, and its second derivative be continuous
at the junction points xj.

Definition 5. (Interpolating cubic spline) Let f ∈ C[a, b], and {xj, j =
0, . . . , N} ⊂ [a, b]. An interpolating cubic spline is a function s(x) such that

1. s(xj) = f(xj);

2. s(x) is a polynomial of degree 3 over each segment [xj−1, xj];

3. s(x) is globally C2, i.e., at each junction point xj, we have the relations

s(x−j) = s(x+
j), s′(x−j) = s′(x+

j), s′′(x−j) = s′′(x+
j),

where the notations s(x−j) and s(x+
j) refer to the adequate limits on the

left and on the right.

6

12

3.4. PIECEWISE POLYNOMIAL INTERPOLATION

Let us count the degrees of freedom. A cubic polynomial has 4 coefficients.
There are N + 1 points, hence N subintervals, for a total of 4N numbers to
be specified.

The interpolating conditions s(xj) = f(xj) specify two degrees of freedom
per polynomial: one value at the left endpoint xj 1, and one value at the right−
endpoint xj. That’s 2N conditions. Continuity of s(x) follows automatically.
The continuity conditions on s′, s′′ are imposed only at the interior grid points
xj for j = 1, . . . , N − 1, so this gives rise to 2(N − 1) additional conditions,
for a total of 4N − 2 equations.

There is a mismatch between the number of unknowns (4N) and the
number of conditions (4N−2). Two more degrees of freedom are required to
completely specify a cubic spline interpolant, hence the precaution to write
“an” interpolant in the definition above, and not “the” interpolant.

The most widespread choices for fixing these two degrees of freedom are:

• Natural splines:
s′′(x0) = s′′(xN) = 0.

If s(x) measures the displacement of a beam, a condition of vanishing
second derivative corresponds to a free end.

• Clamped spline:

s′(x0) = p0, s′(xN) = pN ,

where p0 and pN are specified values that depend on the particular
application. If s(x) measures the displacement of a beam, a condition
of vanishing derivative corresponds to a horizontal clamped end.

• Periodic spline: assuming that s(x0) = s(xN), then we also impose

s′(x0) = s′(xN), s′′(x0) = s′′(xN).

Let us now explain the algorithm most often used for determining a cubic
spline interpolant, i.e., the 4N coefficients of the N cubic polynomials, from
the knowledge of f(xj). Let us consider the natural spline.

It is advantageous to write a system of equations for the second derivatives
at the grid points, that we denote σj = s′′(xj). Because s(x) is piecewise
cubic, we know that s′′(x) is piecewise linear. Let hj = xj − xj−1. We can
write

x
s′′

j x x xj 1
(x) =

−
σj

hj
−1 +

− −
σj, x

hj
∈ [xj−1, xj].

13

CHAPTER 3. INTERPOLATION

Hence

(xj − x)3 (x
s(x) = σj 1 +

− xj−1)
3

σj + αj(x− xj 1) + β
6hj

−
6hj

− j(xj − x).

We could have written ax + b for the effect of the integration constants in
the equation above, but writing it in terms of αj and βj makes the algebra
that follows simpler. The two interpolation conditions for [xj ,−1 xj] can be
written

σ h2
j 1 j

s(xj 1) = f(xj 1) ⇒ f(x 1) =
−

j + h β− − − j j,
6

σ
s(xj) = f(xj) ⇒ jh

2
j

f(xj) = + hjαj.
6

One then isolates αj, βj in this equation; substitutes those values in the
equation for s(x); and evaluates the relation s′(x−j) = s′(x+

j). Given that
σ0 = σN = 0, we end up with a system of N − 1 equations in the N − 1
unknowns σ1, . . . , σN . Skipping the algebra, the end result is

f(xj+1) f(xj) f(xj) f(xj 1)
hjσj 1 + 2(hj+1+hj)σj + hj+1σj+1 = 6−

(
− −

hj+1

− −

hj

)
.

We are in presence of a tridiagonal system for σj. It can be solved efficiently
with Gaussian elimination, yielding a LU decomposition with bidiagonal
factors. Unlike in the case of linear splines, there is no way around the fact
that a linear system needs to be solved.

Notice that the tridiagonal matrix of the system above is diagonally dom-
inant (each diagonal element is strictly greater than the sum of the other
elements on the same row, in absolute value), hence it is always invertible.

One can check that the interpolation for cubic splines is O(h4) well away
from the endpoints. This requires an analysis that is too involved for the
present set of notes.

Finally, like in the linear case, let us consider the question of expanding
a cubic spline interpolant as a superposition of basis functions

s(x) =
∑

ckφk(x).
k

There are many ways of choosing the functions φk(x), so let us specify that
they should have as small a support as possible, that they should have the

14

3.4. PIECEWISE POLYNOMIAL INTERPOLATION

same smoothness C2 as s(x) itself, and that they should be translates of each
other when the grid xj is equispaced with spacing h.

The only solution to this problem is the cubic B-spline. Around any
interior grid point xk, is supported in the interval [xk−2, xk+2], and is given
by the formula

1
φk(x) = S(3)(x

4h3
− xk−2),

where

S (x) = x3 3
(3) + − 4(x− h)+ + 6(x− 2h)3

+ − 4(x− 3h)3
+ + (x− 4h)3

+,

and where x+ is the positive part of x. One can check that φk(x) takes the
value 1 at xk, 1/4 at xk 1, zero outside of [x± k , x], and is C2 at each−2 k+2

junction. It is a bell-shaped curve. it is an interesting exercise to check that
it can be obtained as the convolution of two “tent” basis functions of linear
interpolation:

S(3)(x) = cS(1)(x) ∗ S(1)(x),

where c is some constant, and the symbol ∗ denotes convolution:

f ∗ g(x) =

∫
f(y)g(x y) dy.

R
−

Now with cubic B-splines, we cannot put ck = f(xk) anymore, since
φk(xj) = δjk. The particular values of ck are the result of solving a lin-
ear system, as mentioned above. Again, there is no way around solving a
linear system. In particular, if f(xk) changes at one point, or if we add a
datum point (xk, fk), then the update requires re-computing the whole inter-
polant. Changing one point has ripple effects throughout the whole interval
[a, b]. This behavior is ultimately due to the more significant overlap between
neighboring φk in the cubic case than in the linear case.

6

15

MIT OpenCourseWare
http://ocw.mit.edu

18.330 Introduction to Numerical Analysis
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

