
Chapter 5

Methods for ordinary
differential equations

5.1 Initial-value problems

Initial-value problems (IVP) are those for which the solution is entirely known
at some time, say t = 0, and the question is to solve the ODE

y′(t) = f(t, y(t)), y(0) = y0,

for other times, say t > 0. We will consider a scalar y, but considering
systems of ODE is a straightforward extension for what we do in this chapter.
We’ll treat both theoretical questions of existence and uniqueness, as well as
practical questions concerning numerical solvers.

We speak of t as being time, because that’s usually the physical context
in which IVP arise, but it could very well be a space variable.

Does a solution exist, is it unique, and does it tend to infinity (blow up)
in finite time? These questions are not merely pedantic. As we now show
with two examples, things can go wrong very quickly if we posit the wrong
ODE.

Example 12. Consider

y′ =
√
y, y(0) = 0.

By separation of variables, we find∫
dy
√ =
y

∫
(t+ C)2

dt ⇒ y(t) = .
4

1



CHAPTER 5. METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Imposing the initial condition yields C = 0, hence y(t) = t2/4. However,
y(t) = 0 is clearly another solution, so we have non-uniqueness. In fact, there
is an infinite number of solutions, corresponding to y(t) = 0 for 0 ≤ t ≤ t∗ for
some t∗, which then takes off along the parabola the parabola y(t) = (t−t∗)2/4
for times t ≥ t∗.

Example 13. Consider

y′ = y2, y(0) = 1.

By separation of variables, we find∫
dy

=
y2

∫
dt ⇒ y(t) =

−1
.

t+ C

The initial condition gives C = −1, hence y(t) = 1/(1 − t). It blows up at
time t = 1, because y(t) has a vertical asymptote. We say that the solution
exists locally in any interval to the left of t = 1, but we don’t have global
existence.

Blowup and non-uniqueness are generally, although not always1, unreal-
istic in applications. A theory of existence and uniqueness, including global
existence (non blowup), is desired to guide us in formulating valid models
for physical phenomena.

The basic result is the following.

Theorem 8. (Picard) For given T,C, and y0, consider the box B in (t, y)
space, given by

B = [0, T ]× [y0 − C, y0 + C].

Assume that

• f(t, y) is continuous over B;

• |f(t, y)| ≤ K when (t, y) ∈ B; (boundedness)

• |f(t, u) − f(t, v)| ≤ L|u − v| when (t, u), (t, v) ∈ B. (Lipschitz
continuity).

1In nonlinear optics for instance, laser pulses may “collapse”. This situation is some-
what realistically modeled by an ODE that blows up, although not for times arbitrarily
close to the singularity.

2



5.2. NUMERICAL METHODS FOR INITIAL-VALUE PROBLEMS

Assume furthermore that C ≥ K (eLT − 1). Then there exists a unique y
L

∈
C1[0, T ], such that

y′(t) = f(t, y(t)), y(0) = y0,

and such that |y(t) − y0| ≤ C. In short, the solution exists, is unique, and
stays in the box for times 0 ≤ t ≤ T .

Proof. The technique is called Picard’s iteration. See p.311 in Suli-Mayers.

The ODE y′ =
√
y does not satisfy the assumptions of the theorem above

because the square root is not a Lipschitz function. The ODE y′ = y2 does
not satisfy the assumptions of the theorem above because y2 is not bounded
by a constant K.

5.2 Numerical methods for Initial-Value Prob-

lems

Here is an overview of some of the most popular numerical methods for
solving ODEs. Let tn = nh, and denote by yn the approximation of y(tn).

1. Forward Euler (a.k.a. explicit Euler).

yn+1 = yn + hf(tn, yn).

This formula comes from approximating the derivative y′ at t = tn by
a forward difference. It allows to march in time from the knowledge of
yn, to get yn+1.

2. Backward Euler (a.k.a. implicit Euler).

yn+1 = yn + hf(tn+1, yn+1).

This time we use a backward difference for approximating the derivative
at t = tn+1. The unknown yn+1 appears implicitly in this equation,
hence the name implicit. It still needs to be solved for as a function
of yn, using (for instance) Newton’s method. The strategy is still to
march in time, but at every step there is a nonlinear equation to solve.

3



CHAPTER 5. METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

3. Trapezoidal (a.k.a. midpoint) rule (implicit).

h
yn+1 = yn + [f(tn, yn) + f(tn+1, yn+1)] .

2

In this equation yn+1−yn has the interpretation of a centered difference
h

about the midpoint tn+ 1 = tn+tn+1 , but since f(tn+ 1 , yn+ 1 ) is not ac-
2 2 2 2

cessible (yn+ 1 is not part of what we wish to solve for), we replace it
2

by the average 1 [f(tn, yn) + f(tn+1, yn+1)]. This gives a more balanced
2

estimate of the slope yn+1−yn . It is an implicit method: yn+1 needs to
h

be solved for.

4. Improved Euler, Runge-Kutta 2 (explicit).

ỹn+1 = yn + hf(tn, yn),

h
yn+1 = yn + [f(tn, yn) + f(tn+1, ỹn+1)] .

2

This is the simplest of “predictor-corrector” methods. It is like the
midpoint rule, except that we use a guess ỹn+1 for the unknown value
of yn+1 in the right-hand side, and this guess comes from the explicit
Euler method. Now yn+1 only appears in the left-hand side, so this is
an explicit method.

5. Runge-Kutta 4 (explicit).

yn+1 = yn + h[k1 + 2k2 + 2k3 + k4],

where the slopes k1, . . . , k4 are given in succession by

h h
k1 = f(tn, yn), k2 = f(tn + , yn + k1),

2 2

h h
k3 = f(tn + , yn + k2), k4 = f(tn + h, yn + hk3).

2 2

6. There are also methods that involve not just the past value yn, but a
larger chunk of history yn−1, yn−2,etc. These methods are called multi-
step. They are in general less flexible than the one-step methods de-
scribed so far, in that they require a constant step h as we march in
time.

4



5.2. NUMERICAL METHODS FOR INITIAL-VALUE PROBLEMS

Two features of a numerical method are important when choosing a nu-
merical method:

• Is it convergent, i.e., does the computed solution tend to the true solu-
tion as h→ 0, and at which rate?

• Is it stable, i.e., if we solve with different initial conditions y0 and ỹ0,
are the computed solutions close in the sense that |yn− ỹn| ≤ C|y0− ỹ0|,
with n = O(1/h), and C independent of h?

5.2.1 Convergence

To understand convergence better in the case of one-step methods, let us
write the numerical scheme as

yn+1 = Ψ(tn, yn, h),

and introduce the local error

en+1(h) = Ψ(tn, y(tn), h)− y(tn+1),

as well as the global error

En(h) = yn − y(tn).

The expression of the local error can be explained as “trying the exact
solution in the numerical scheme” — although the exact solution is unknown.
It is a lot easier to approach the convergence question via local errors than
global errors. It would not be practical, for instance, to “try an approximate
solution in the exact ODE”.

Convergence is the study of the global error. Consistency is the study
of the local error. A numerical method is called consistent if the local error
decays sufficiently fast as h → 0 that there is hope that the global error
would be small as well. The particular rate at which the local error decays
is related to the notion of order of an ODE solver.

Definition 6. (Consistency) Ψ is consistent if, for any n ≥ 0,

en(h)
lim = 0
h→0 h

5



CHAPTER 5. METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Definition 7. (Order) Ψ is of order p if en(h) = O(hp+1).

The basic convergence theorem for one-step solvers, that we
will not prove, is that if the local error is O(hp+1), then the global
error is O(hp). This convergence result is only true as stated for one-
step methods; for multi-step methods we would also need an assumption of
stability (discussed below). Intuitively, the local errors compound over the
O(1/h) time steps necessary to reach a given fixed time t, hence the loss of
one power of h. Of course the local errors don’t exactly add up; but they do
up to a multiplicative constant. It is the behavior of the global error that
dictates the notion of order of the numerical scheme.

It is a good exercise to show, using elementary Taylor expansions, that the
explicit and implicit Euler methods are of order 1, and that the midpoint rule
and improved Euler methods are of order 2. It turns out that Runge-Kutta
4 is of order 4, but it is not much fun to prove that.

5.2.2 Stability

Consistency and convergence do not tell the whole story. They are helpful
in the limit h→ 0, but don’t say much about the behavior of a solver in the
interesting regime when h is small, but not so small as to make the method
computationally inefficient.

The single most important consideration in the regime of moderately
small h is perhaps stability. The criterion stated above for stability (|yn −
ỹn| ≤ C|y0 − ỹ0|) is too complex to handle as such. The important ideas
already appear if we study the representative setting of linear stability. The
linearization of the ODE y′ = f(t, y) about a point y0 is obtained from writing
the Taylor expansion

d ∂f
(y(t)− y0) = f(t, y(t)) = f(t, y0) + (t, y0)(y(t)− y0) + o(

dt ∂y
|y(t)− y0|).

The culprit for explosive (exponential) growth or decay is the linear term
∂f (t, y0)(y(t) − y0). (Indeed, if the other two terms are neglected, we can
∂y

write the solution, locally, as an exponential.) For practical purposes it is
sufficient to check stability for the linear equation y′ = λy, keeping in mind
that λ is a number representative of the derivative ∂f (t, y0) of f at y0 in the

∂y

y variable.

6



5.2. NUMERICAL METHODS FOR INITIAL-VALUE PROBLEMS

Definition 8. (Linear stability2) Suppose y′ = λy for some λ ∈ C. Then the
numerical method Ψ is linearly stable if yn → 0 as n→∞.

Of course linear stability depends on the value of λ. Stability for the
original equation y′ = λy is guaranteed if Re(λ) < 0 (because the solution is
y(0)eλt), and the question is that of showing whether a numerical method Ψ
is stable under the same condition or not.

If a numerical method is stable in the above sense for a certain range of
values of λ, then it is possible to show that it will be stable for the ODE
y′ = f(t, y) as long as ∂f is in that range of λ (and f is smooth enough). We

∂y

won’t prove this theorem here.
Let us consider a few examples

Example 14. For the forward Euler method applied to y′ = λy, we get

yn+1 = yn + hλyn = (1 + hλ)yn.

The iterates yn tend to zero provided |1 + hλ| < 1, where the | · | denote
the complex modulus. Write hλ = x + iy, so that the inequality becomes
(1 + x)2 + y2 < 1. This is the equation of a disc in the complex (hλ)-plane,
with center at −1, and radius 1. If hλ sits inside this disk, the method
is stable, and otherwise it isn’t. We say that the forward Euler method is
conditionally stable: typically, we require both Re(λ) < 0 and a small step
size h in order to guarantee stability.

Example 15. The backward Euler method applied to y′ = λy gives

yn+1 = yn + hλyn+1,

or in other words
yn

yn+1 = .
1− hλ

The iterates yn tend to zero provided |1− hλ| > 1. In terms of hλ = x+ iy,
this becomes (x − 1)2 + y2 > 1. This condition is satisfied whenever hλ is
outside the disc in the complex (hλ)-plane with center at +1, and radius 1.
In that case the method is stable, and otherwise it isn’t. We say that the
backward Euler method is unconditionally stable: the stability zone for the
ODE (Re(λ) < 0) is always included in the stability zone of the numerical

2Sometimes called A-stability in some texts.

7



CHAPTER 5. METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

method, regardless of h. In fact the zone of stability for the backward Euler
method is larger than the left complex half-plane, so there exist choices of
(large) time steps for which the numerical method is stable although the ODE
isn’t.

Example 16. The linearized stability analysis of the midpoint method gives

yn yn+1
yn+1 = yn + hλ( + ),

2 2

hence
1 + hλ/2

yn+1 =

(
1− hλ/2

)
yn.

The method is stable provided

1 + hλ/2| < 1.
1− hλ/2

|

In terms of hλ = x+ iy, we can simplify to get

x y x y
(1 + )2 + ( )2 < (1

2 2
− )2 + ( )2,

2 2

which is true if and only if x < 0. So the stability region is Re(hλ) < 0, the
same as that of the ODE. As a result, the method is unconditionally stable.

It is a general rule that explicit methods have conditional stability (sta-
bility only happens when the time step is small enough, if it does at all),
whereas implicit methods are unconditionally stable.

The stability regions for the Runge-Kutta methods are plotted on page
351 of Suli-Mayers.

Stability can also be studied for systems of ODEs y′(t) = f(t, y(t)) where
both y and f are vectors. The interesting object is now the Jacobian matrix

A = ∇yf(t, y0).

(it is a matrix because the gradient of a vector function is a ”vector of vec-
tors”, i.e., a matrix.) The linearized problem is now

y′(t) = Ay(t),

which has the solution y(0)etA, where etA is a matrix exponential. Stability
will happen when the eigenvalues λ of A all obey Re(λ) < 0. So the story

8



5.2. NUMERICAL METHODS FOR INITIAL-VALUE PROBLEMS

is the same as in the scalar case, except that λ is now any eigenvalue of
the Jacobian matrix. So we need to make sure that hλ is in the stability
zone of the ODE solver in the complex plane, for each λ an eigenvalue of the
Jacobian matrix.

Problems for which λ has a very large, negative real part are called stiff.
Physically they are very stable, but they pose numerical problems for ex-
plicit methods since the region of stability does not extend very far along
the negative real axis. Implicit methods are hands down the best for stiff
problems.

5.2.3 Miscellaneous

Another interesting class of methods, and a way to naturally design high-
order methods, is deferred correction. Assume that time is split into a uniform
grid tj = jh, and that some low-order method has given us the samples
y1, . . . , yn+1 for some (small) m. Denote by πn(t) the n-th order interpolation
polynomial passing through the (tj, yj). Consider the error (“defect”)

δ(t) = y(t)− πn(t).

It obeys the equation

δ′(t) = f(t, y(t))− πn′ (t), δ(0) = 0.

We do not have access to y(t) in the argument of f , but we can replace it by
our best guess πn(t) + δ(t). This way we can compute an approximate defect

δ̃′ ˜ ˜(t) = f(t, πn(t) + δ(t))− πn′ (t), δ(0) = 0.

˜using the same (or another) low-order method. Once δ(t) is computed, add
it back to the interpolant to get

˜ỹ(t) = πn(t) + δ(t).

This procedure can be repeated a few times to get the desired accuracy.
(This version of deferred correction is actually quite recent and due to Dutt,
Greengard, and Rokhlin, 2000).

9



CHAPTER 5. METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

5.3 Boundary-value problems

Boundary-value problems (BVP) are ODE where some feature of the solution
is specified at two ends of an interval. The number of initial or boundary
conditions matches the order of the highest derivative in the equation, hence
such ODE are generally second-order scalar equations. The simplest exam-
ples are

−u′′(x) = f(x), x ∈ [0, 1], u(0) = a, u(1) = b (Dirichlet)

−u′′(x) = f(x), x ∈ [0, 1], u′(0) = a, u′(1) = b (Neumann)

−u′′(x) = f(x), x ∈ [0, 1], u(0) = u(1) (periodic)

We don’t really mean to study the equation−u′′ = f for its own sake (you can
find the general solution by integrating f twice and fixing the two constants
from the boundary conditions), but its study serves two purposes:

• It is the simplest ODE that models problems in continuous elasticity:
here u is the displacement of a vertical elastic bar, or rod, that sags
under its own weight. The right-hand-side f is the gravitational force
as a function of x, and u′ is the “elongation”, or strain of the bar.
A condition where u is specified means that the bar is fixed at that
end, while the condition u′ = 0 would mean that that end is free. The
condition u(0) = u(1) means that it’s an elastic band. By solving the
ODE we are finding the displacement u generated by the force f .

• It is the simplest boundary-value problem to treat numerically, and
contains many of the important features of such problems. It needs to
be understood before moving on to any other example.

Alternative problems of this kind are

−u′′(x) + α(x)u(x) = f(x), u(0) = a, u(1) = b,

for instance, the solution of which does not generally obey an explicit formula.

A first intuitive method for solving BVP is the shooting method. Consider
again u′′(x) + α(x)u(x) = f(x), u(0) = a, u(1) = b. We cannot in general
march in time from 0 to 1 (the variable x is more often a spatial variable),

10



5.3. BOUNDARY-VALUE PROBLEMS

but we can guess what the derivative should have been for the solution to
end up near b at x = 1. Introduce a parameter s, and write

−u′′(x; s) + α(x)u(x; s) = f(x), u(0; t) = a, u′(0; s) = s.

Of course in general we won’t reach b at x = 1, but we can refine our estimate
of s so that we get closer to it. The problem becomes that of solving for s in
u(1; s) = b, where u(1; s) is defined implicitly from the ODE. This equation
that can be viewed as a root-finding or fixed-point problem and solved using
any of the methods we’ve seen previously. The secant method only requires
evaluations of u(1; s), which involves solving the ODE. To set up Newton’s
method, we need the derivative ∂u(1; s) of the solution as a function of its

∂t

parameter s. Exercise: find the value of this derivative by differentiating the
ODE in the t parameter, and obtain an ODE for pdu(1; s) itself.

∂t

The shooting method is easy and intuitive (and there isn’t much more
to say about it), but it has the disadvantage of being restricted to ODE. In
contrast, we’ll now investigate finite difference methods, which can also be
applied to partial differential equations (PDE).

Let’s start by considering the problem −u′′ = f , u(0) = u(1) = 0. Con-
sider the grid xj = jh, j = 0, . . . , N , h = 1/N . This grid has N + 1 points.
The usual 3-point stencil for the centered second difference gives rise to

U − 2U + U− j+1 j j−1
= f(xj). (5.1)

h2

In this context, capital U denotes the numerical solution, while lowercase
u denotes the exact solution. For the boundary conditions, we simply set
U0 = UN = 0. The rest of the Uj for j = 1, . . . N − 1 are unknowns and
can be solved for from the linear system KU = F generated by (5.1). The
resulting matrix K (of size N − 1 by N − 1) is

1
K =

 
h2


2 −1
−1 2

.
−1

. .. . .. .



The zero elements are not sho

 .

−1 2 −1
−1 2


wn. The right-hand side is here Fj = f(xj).

In Matlab, one then solves U as K \F . Had the boundary conditions been

11



CHAPTER 5. METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

U0 = a and UN = b instead, it is a good exercise to check that this does not
change K, but that the right-hand side gets modified as

F =

 f(x1) + a
h2


 f(x2)

. ..


.

f(xN−2)
f(xN + b


−1) h2


Of course, the matrix K should


be invertible


for this strategy to make

sense. We will see below that this is the case. It is also important that K−1

be bounded for convergence of the numerical scheme.

Definition 9. The local truncation error (LTE) of a numerical scheme KU =
F , is the error made when evaluating the numerical scheme with the exact
solution u(xj) in place of the numerical solution Uj. It is the quantity τ in

Ku = F + τ.

The local truncation is directly obtained from the truncation error of the
finite-difference scheme, for instance

u(x− j+1)− 2u(xj) + u(xj−1)
= f(x 2

j) +O(h ),
h2

so the LTE is O(h2).

Definition 10. The (actual) error of a numerical scheme KU = F , is the
vector of differences ej = u(xj)− Uj.

In order to obtain the error e from the LTE, one writes

Ku = F + τ, KU = F,

and subtract those two equations. This gives K(u − U) = (F − F ) + τ , or
Ke = τ . If K is invertible, this gives

e = K−1τ.

The next few sections introduce the tools needed to control how large e
can get from the knowledge that it is τ “magnified” by K−1.

12



5.3. BOUNDARY-VALUE PROBLEMS

5.3.1 Matrix norms and eigenvalues

This section is mostly a linear algebra refresher.

Definition 11. The spectral norm, or 2-norm, of (any rectangular, real)
matrix A is

Ax‖A‖2 = max
‖ ‖2

,
x=0 ‖x‖2

where the vector 2-norm is ‖x‖2 = i x
2
i . In other words, the matrix 2-

norm is the maximum stretch factor

√
for

∑
the length of a vector after applying

the matrix to it.

Remark that, by definition,

‖Ax‖2 ≤ ‖A‖2‖x‖2,

for any vector x, so the matrix 2-norm is a very useful tool to write all sorts
of inequalities involving matrices.

We can now characterize the 2-norm of a symmetric matrix as a function
of its eigenvalues. The eigenvalue decomposition of a matrix A is, in matrix
form, the equation AV = V Λ, where V contains the eigenvectors as columns,
and Λ contains the eigenvalues of the diagonal (and zero elsewhere.) For those
(non-defective) matrices for which there is a full count of eigenvectors, we
also have

A = V ΛV −1.

Symmetric matrices have a full set of orthogonal eigenvectors, so we can
further write V TV = I, V V T = I (i.e. V is unitary, a.k.a. a rotation), hence

A = V ΛV T .

In terms of vectors, this becomes

A =
∑

v T
iλivi .

i

Note that λi are automatically real when A = AT .

Theorem 9. Let A = AT . Then

‖A‖2 = max
i
|λi(A)|.

6

13



CHAPTER 5. METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Proof. First observe that the vector 2-norm is invariant under rotations: if
V TV = I and V V T = I, then ‖V x‖2 = ‖x‖2. This follows from the defini-
tion:

‖V x‖2 = (V x)TV x = xT T
2 V V x = xTx = ‖x‖22.

Now fix x and consider now the ratio

‖Ax‖22 x
=

‖x‖2
‖V ΛV T ‖22

2 ‖x‖22

=
‖ΛV Tx

2

‖22 (unitary invariance)
‖x‖2

=
‖Λy‖22 (change variables)
‖V y‖22

=
‖Λy‖22 (unitary invariance again)
‖y‖2∑ 2

λ2

This

∑ y2

= i i i .
i y

2
i

quantity is maximized when y is concentrated to have nonzero compo-
nent where λi is the largest (in absolute value): yj = 1 when |λj| = maxn |λn|,
and zero otherwise. In that case,

‖Ax‖22 = maxλ2

‖x‖2 n,
n2

the desired conclusion.

Note: if the matrix is not symmetric, its 2-norm is on general not its
largest eigenvalue (in absolute value). Instead, the 2-norm is the largest
singular value (not material for this class, but very important concept.)

One very useful property of eigenvalues is that if A = V ΛV T is invertible,
then

A−1 = V Λ−1V T

(which can be checked directly), and more generally

f(A) = V f(Λ)V T ,

where the function f is applied componentwise to the λi. The eigenvectors of
the function of a matrix are unchanged, and the eigenvalues are the function
of the original eigenvalues.

14



5.3. BOUNDARY-VALUE PROBLEMS

If a matrix A is not invertible, things usually go wrong when trying to
solve the linear system Ax = b.

Definition 12. The nullspace of (any rectangular, real) matrix A is the space
Null(A) of all vectors v such that Av = 0. In other words, it is the eigenspace
corresponding to the eigenvalue zero.

Null(A) always contains the zero vector. The following conditions are
equivalent to characterize singular matrices:

• A is singular (non-invertible);

• Null(A) contains some nonzero vector;

• 0 is an eigenvalue of A;

• det(A) = 0;

• The rows/columns are linearly dependent;

• (Zero is a pivot in the row echelon reduction of A.)

We now present a version of the inversion theorem for symmetric matrices.
If the matrix is not symmetric, the statement looks quite different.

Theorem 10. Let A = AT . Consider the system Ax = b.

• If A is invertible, then the solution is unique and x = A−1b.

• If Null(A) = span(v1, . . . vm) = 0, then

– If b has a component along any of the vj (i.e., vTj b = 0 for some
j), then the system has no solution.

– If all vTj b = 0, j = 1, . . . ,m, then there exists an infinite numb
solution to the system. If x0 is a solution, then so is x0+

∑ er of
m
j=1 cjvj

for arbitrary coefficients cj.

In terms of eigenvectors vj, if the matrix is invertible, the solution of
Ax = b is

N

x =
∑ 1

vj vT
λ j b.
jj=1

6

6

15



CHAPTER 5. METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

If A is not invertible, but vTj b = 0 for all the eigenvectors vj, j = 1, . . . ,m
corresponding to the zero eigenvalue (as in the theorem above), then we still
have

N

x =
∑ m

1
vj vTj b+

∑
cjvj,

λjj=m+1 j=1

where the first sum only runs from m + 1 to N , and the coefficients cj are
arbitrary. (Apply the matrix A to this equation to see that they disappear.)

If vTj b = 0, then the operation 1 vTj b would result in an infinity when
λj

λj = 0 — a crude reason to see why the system has no solution in that case.

5.3.2 Properties of the matrix K

We are now equipped to study the matrix K and its inverse. Recall that we
are interested in controlling e = K−1τ to get the error from the LTE. From
the results in the previous section, we know that

‖e‖2 = ‖K−1τ‖2 ≤ ‖K−1‖2‖τ‖2.

Since K is a symmetric matrix,

‖K−1 1‖2 = max |λj(K−1)| = .
j minj |λj(K)|

So it remains for us to understand the eigenvalues of K, and specifically to
show that the minimum eigenvalue (in absolute value) does not get too small.
What we mean by this is that there should exist a number c > 0 such that

c < min
j
|λj(K)|,

independently of the grid spacing h (recall that the size of K and its entries
depend on h.) Only in that case will we be able to conclude that ‖e‖ is of
the same order of magnitude as ‖τ‖.

Note in passing that if τ = O(h2) then ‖τ
3

‖2 = i τ
2
i will beO( 1h4) =

h

O(h /2), which is not very appealing. Instead, it
vector 2-norm as

√
is

∑
common to mo

√
dify the

‖τ‖2,h =

√
h
∑

τ 2
i ,

i

6

16



5.3. BOUNDARY-VALUE PROBLEMS

so as to restore ‖τ‖ 2
2,h = O(h ) (note how h times the sum resembles an

integral quadrature.) In that case, we also expect ‖τ‖2,h = O(h2). The
reasoning with matrix 2-norms does not change one bit form this different
choice of normalization.

Let us now study the eigenvalues and eigenvectors of K. The best way
to guess them is to notice that KU = F is a discretization of −u′′ = f with
Dirichlet boundary conditions. The eigenvalue problem

−v′′ = λv, v(0) = v(1) = 0,

has a solution in terms of sines: for each n ≥ 1, we have the pair

vn(x) = sin(nπx), λ = n2π2.

This analogy is very fruitful: the eigenvectors of K are precisely the vn
sampled at xj = jh,

(n)
vj = sin(nπjh), j = 1, . . . , N − 1, n = 1, . . . , N − 1.

(here n is the label index, and j is the component index.) It is straightforward
and a little tedious to check from trigonometric formulas that v(n) defined by
this formula are indeed eigenvectors, with eigenvalues

4
λn = sin2 πnh

( ), n = 1, . . . , N
h2 2

− 1.

A Taylor expansion for small h shows that the minimum eigenvalue is λ1 =
π2 +O(h2), and this O(h2) is positive, so that λ1 ≥ π2.

Note in passing that since K is symmetric, the eigenvectors are automat-
ically orthogonal, hence there is a way to normalize them so that V TV = I
and V V T = I. Applying the matrix V T is called the discrete sine trans-
form (DST), and applying the matrix V is called the inverse discrete sine
transform (IDST).

The formula for the eigenvalues has two important consequences:

• The matrix K is invertible, now that it is clear that all its eigenvalues
are positive. So setting up the discrete problem as KU = F makes
sense.

• Returning to the error bound, we can now conclude that ‖e‖2,h
1

≤
2‖τ 2

2,h = O(h ), establishing once and for all that the finite-difference
π
‖

method is second-order accurate for −u′′ = f with Dirichlet boundary
conditions.

17



CHAPTER 5. METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

The reasoning of first establishing consistency (small LTE) and showing
a stability result transferring at the level of the actual error is very common
in numerical analysis. Consistency + Stability = Convergence.

5.3.3 Other boundary conditions and other equations

The boundary conditions (BC) play a crucial role in the description of the
problem: if the BC changes, the solution changes completely, and so can the
LTE and the error. For instance, let’s return to the Neumann problem

−u′′(x) = f(x), x ∈ [0, 1], u′(0) = a, u′(1) = b (Neumann)

The discretization of the interior equations is the same as previously, but at
least one extra equation needs to be added for the BC. For instance, at zero,
we may write a forward difference

U1 − U0
= a.

h

and similarly, a backward difference at x = 1. Each BC adds one row and
one column to the original matrix K, and results in a different system of
equations. The choice above leads to a first-order LTE, only O(h), even
though the LTE for the interior equations is O(h2). This is enough to spoil
the error itself: we don’t have ‖e‖2,h = O(h2) in general, as a result of the
low-accuracy boundary conditions.

A more accurate way to discretize a Neumann boundary condition is to
introduce a “ghost” node U−1, and write

U1 − U−1
= a.

2h

This new unknown is linked to the others by writing the equation one more
time at j = 0,

= U1 + 2U0 − U−1
= f(x0).

h2

(Previously, we had only evaluated the equation at j = 1, . . . , N − 1.) This
results in two additional rows and columns per BC. The same treatment
should be applied at x = 1.

Note that these additional “boundary” rows can be scaled so that the
resulting matrix looks symmetric, or at least more balanced. For instance,

18



5.3. BOUNDARY-VALUE PROBLEMS

by rescaling the U1−U−1 = a by 2/h (including the right-hand side) we get
2h

the resulting matrix −1 0 1

T =
−1 2 −1 −1 2 −1


. . .. . .. . .


The eigenvalues depend on this choice of normalization!



Notice that, unlike the Dirichlet problem, the Neumann problem has a
nullspace. The vector identically equal to 1 is in the nullspace of either of the
2 discretizations we have presented. ∑As a result, there exists a solution only
if the admissibility condition 1Tf = i f(xi) = 0 is satisfied (see a theorem
in the previous section). This is also a feature of the non-discretized BVP:

it has a solution if and only if
∫ 1
f(x) dx = 0.

0

The periodic problem is also very interesting:

−u′′(x) = f(x), x ∈ [0, 1], u(0) = u(1) (periodic)

The boundary condition U0 = UN modifies K by adding two elements in the
bottom-left and top-right:

1 .C =


2 −1 −1
−1 2

.
−1

. . . .


h2

 . . . −1 2 −1


−1 −1 2


This new matrix C is circulant and singular. We can chec


k that the vector 1 is

in its nullspace, so the BVP has a solution if and only if 1Tf = i f(xi) = 0.
The eigenvectors of C are the Fourier components

(n)
v = wjn = e2πijn/Nj , w = e2πi/N .

∑

Since C is symmetric, these v(n) are orthogonal (and orthonormal when di-
vided by

√
N). To deal with vectors and matrices that have complex entries,

don’t forget that the transposes come with a complex conjugate, so the dot
product is

x∗y = xTy = xiyi.
i

The norm is ‖x‖2 =
√∑

i |xi|2. The orthogonalit

∑
y relations for the matrix of

eigenvectors are now V ∗V = I and V V ∗ = I, where ∗ is transpose conjugate.

19



MIT OpenCourseWare
http://ocw.mit.edu

18.330 Introduction to Numerical Analysis
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



