
Chapter 6

Fourier analysis

(Historical intro: the heat equation on a square plate or interval.)
Fourier’s analysis was tremendously successful in the 19th century for for-

mulating series expansions for solutions of some very simple ODE and PDE.
This class shows that in the 20th century, Fourier analysis has established
itself as a central tool for numerical computations as well, for vastly more
general ODE and PDE when explicit formulas are not available.

6.1 The Fourier transform

We will take the Fourier transform of integrable functions of one variable
x ∈ R.

Definition 13. (Integrability) A function f is called integrable, or absolutely
integrable, when ∫ ∞

|f(x)| dx <∞,
−∞

in the sense of Lebesgue integration. One also writes f ∈ L1(R) for the space
of integrable functions.

We denote the physical variable as x, but it is sometimes denoted by
t in contexts in which its role is time, and one wants to emphasize that.
The frequency, or wavenumber variable is denoted k. Popular alternatives
choices for the frequency variable are ω (engineers) or ξ (mathematicians),
or p (physicists).
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CHAPTER 6. FOURIER ANALYSIS

Definition 14. The Fourier transform (FT) of an integrable function f(x)
is defined as

f̂(k) =

∫ ∞
e−ikxf(x) dx. (6.1)

−∞

ˆ ˆWhen f(k) is also integrable, f(x) can be recovered from f(k) by means of
the inverse Fourier transform (IFT)

1
f(x) =

∫ ∞
ikx ˆe f(k) dk. (6.2)

2π −∞

ˆIntuitively, f(k) is the amplitude density of f at frequency k. The formula
for recovering f is a decomposition of f into constituent waves.

The justification of the inverse FT formula belongs in a real analysis class
(where it is linked to the notion of approximate identity.) We will justify the
form of (6.2) heuristically when we see Fourier series in the next section.

The precaution of assuming integrability is so that the integrals can be
understood in the usual Lebesgue sense. In that context, taking integrals
over infinite intervals is perfectly fine. If (6.1) and (6.2) are understood as
limits of integrals over finite intervals, it does not matter how the bounds are
chosen to tend to ±∞.

One may in fact understand the formulas for the FT and IFT for much
larger function classes than the integrable functions, namely distributions,
but this is also beyond the scope of the class. We will generally not overly
worry about these issues. It is good to know where to draw the line: the
basic case is that of integrable functions, and anything beyond that requires
care and adequate generalizations.

Do not be surprised to see alternative formulas for the Fourier transfom
in other classes or other contexts. Wikipedia lists them.

Here are some important properties of Fourier transforms:

• (Differentiation)
′̂ ˆf (k) = ikf(k).

Justification: integration by parts in the integral for the FT.

• (Translation) If g(x) = f(x+ a), then

ĝ(k) = eikaf̂(k).

Justification: change of variables in the integral for the FT.
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Let’s see some examples of FT.

Example 17. Let

1
{

1 if x ∈ [−a, a];
f(x) = χ[

2a
−a,a](x) = 2a

0 otherwise.

Then
1

f̂(k) =
2a

∫ a

e−ikx
sin(ka)

dx = .
−a ka

This function is a scaled version of the sinc function,

sin k
sinc(k) = .

k

It is easy to check by L’Hospital’s rule that

sinc(0) = 1.

At k →∞, sinc(k) decays like 1/k, but does so by alternating between positive
and negative values. It is a good exercise to check that sinc is not absolutely
integrable. It turns out that the Fourier transform can still be defined for it,
so lack of integrability is not a major worry.

Example 18. Consider the Gaussian function

2

f(x) = e−x /2.

By completing the square and adequately modifying the contour of integration
in the complex plane (not part of the material for this class), it can be shown
that

f̂(k) =
√

2π e−k
2/2.

Example 19. The Dirac delta δ(x) has a FT equal to 1 (why?).

Another basic property of Fourier transforms is the convolution theorem.

Theorem∫ 11. (The convolution theorem.) Denote convolution as f ? g(x) =
∞
f(y)g(x− y) dy. Then−∞

f̂ ˆ? g(k) = f(k) ĝ(k).
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Proof. Let h = f ? g. We can use Fubini below provided every function is
integrable.

ĥ(k) =

∫
e−ikx

∫
f(y)g(x− y) dydx

=

∫ ∫
e−ikyf(y)e−ik(x−y))g(x− y) dydx

=

(∫
e−ikyf(y) dy

) (∫
e−ikx

′
g(x′) dx′

ˆ

)
= f(k) ĝ(k).

The Fourier transform is an important tool in the study of linear differen-
tial equations because it turns differential problems into algebraic problems.
For instance, consider a(polynomial) P (x) =

∑
anx

n, and the ODE

d
P u(x) = f(x), x

dx
∈ R,

which means
∑
a dnu
n n = f . (Such ODE are not terribly relevant in real life
dx

because they are posed over the whole real line.) Upon Fourier transforma-
tion, the equation becomes

ˆP (ik)û(k) = f(k),

which is simply solved as
f̂(k)

û(k) = ,
P (ik)

and then
1
∫ ∞ ˆ

ikx f(k)
u(x) = e dk.

2π P (ik)−∞

Beware the zeros of P when applying this formula! They always carry im-
portant physical interpretation. For instance, they could be resonances of a
mechanical system.

ˆ
The formula û(k) = f(k) also lends itself to an application of the convo-

P (ik)

lution theorem. Let K(x) be the inverse Fourier transform of 1/P (ik). Then
we have

u(x) =

The

∫
K(x− y)f(y) dy.

function K is called Green’s function for the original ODE.
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6.2. SAMPLING AND RESTRICTION

6.2 Sampling and restriction

We aim to use Fourier transforms as a concept to help understand the ac-
curacy of representing and manipulating functions on a grid, using a finite
number of degrees of freedom. We also aim at using a properly discretized
Fourier transform as a numerical tool itself.

For this purpose, x ∈ R and k ∈ R must be replaced by x and k on finite
grids. Full discretization consists of sampling and restriction.

Let us start by sampling x ∈ hZ, i.e., considering xj = jh for j ∈ Z. The
important consequence of sampling is that some complex exponential waves
eikx for different k will appear to be the same on the grid xj. We call aliases
such functions that identify on the grid.

Definition 15. (Aliases) The functions eik1x and eik2x are aliases on the grid
xj = jh if

eik1xj = eik2xj , ∀j ∈ Z.

Aliases happen as soon as

k1jh = k2jh+ 2π × integer(j).

Letting j = 1, and calling the integer n, we have

2π
k1 − k2 = n,

h

for some n ∈ Z. To wave numbers k1, k2 are indistinguishable on the grid if
they differ by an integer multiple of 2π/h.

For this reason, we restrict without loss of generality the wavenumber to
the interval

k ∈ [−π/h, π/h].

We also call this interval the fundamental cell in frequency (in reference to
a similar concept in crytallography.)

Real-life examples of aliases are rotating wheels looking like they go back-
wards in a movie, Moiré patterns on jackets on TV, and stroboscopy.

The proper notion of Fourier transform on a grid is the following.

Definition 16. Let xj = hj, fj = f(xj). Semidiscrete Fourier transform
(SFT):

∞

f̂(k) = h
j=

∑
e−ikxjfj, k ∈ [−π/h, π/h]. (6.3)

−∞
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Inverse semidiscrete Fourier transform (ISFT):

1 π/h
ˆfj =

∫
eikxf(k) dk. (6.4)

2π −π/h

As we saw, sampling in x corresponds to a restriction in k. If one still
wanted to peek outside [−π/h, π/h] for the SFT, then the SFT would simply
repeat by periodicity:

2nπˆ ˆf(k + ) = f(k).
h

(why?). That’s why we restrict it to the fundamental cell.
We can now define the proper notion of Fourier analysis for functions

that are restricted to x in some interval, namely [−π, π] for convention. Un-
surprisingly, the frequency is sampled as a result. the following formulas are
dual to those for the SFT.

Definition 17. Fourier series (FS):

f̂k =

∫ π

e−ikxf(x) dx. (6.5)
−π

Inverse Fourier series (IFS)

1
∞

f(x) =
∑

eikxf̂k, x ∈ [−π, π]. (6.6)
2π

k=−∞

If one uses the Fourier series inversion formula (6.6) for x outside of its
intended interval [−π, π], then the function simply repeats by periodicity:

f(x+ 2nπ) = f(x).

(again, why?)
The two∫ formulas (6.5) and (6.6) can be justified quite intuitively. The

expression f(x)g(x) dx is an inner product on functions. It is easy to see
that the complex exponentials√

h
e−ikxj = vj(k)

2π

form an orthonormal set of functions on [−π/h, π/h], for this inner product.
Hence, up to normalization constants, (6.5) is simply calculation of the coef-
ficients in an orthobasis (analysis), and (6.6) is the synthesis of the function
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back from those coefficients. We’d have to understand more about the pecu-
liarities of infinite-dimensional linear algebra to make this fully rigorous, but
this is typically done in a real analysis class.

Here’s an example of SFT.

Example 20.
1

fj = χ[ a,a](xj)
2a

−

Then

a
h

f̂(k) =
2a

∑
e−ikjh

j=−a
2a

h
= eikah

2a

∑
e−ikjh

j=0

h ikah (e−ikh)2a+1

= e
− 1

(geometric series)
2a e−ikh − 1
h sin(kh(a+ 1/2))

= .
2a sin(kh/2)

This function is called the discrete sinc. It looks like a sinc, but it periodizes
smoothly when k = −π/h and k = π/h are identified.

Our first slogan is therefore:

Sampling in x corresponds to restriction/periodization in k, and
restriction/periodization in k corresponds to sampling in x.

6.3 The DFT and its algorithm, the FFT

The discrete Fourier transform is what is left of the Fourier transfom when
both space and frequency are sampled and restricted to some interval.

Consider
xj = jh, j = 1, . . . , N.

The point j = 0 is identified with j = N by periodicity, so it is not part of
the grid. If the endpoints are x0 = 0 and xN = 2π, then N and h relate as

2π π N
h =

N
⇒ = .

h 2
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For the dual grid in frequency, consider that N points should be equispaced
between the bounds [−π/h, π/h]. The resulting grid is

N N
k, k = − + 1, . . . , .

2 2

We have the following definition.

Definition 18. Discrete Fourier transform (DFT):

N
N N

f̂k = h
∑

e−ikjhfj, k =
j=1

− , . . . , . (6.7)
2 2

Inverse discrete Fourier transform (IDFT)

N/2
1 ˆfj =

∑
eikjhfk, j = 1, . . . , N. (6.8)

2π
k=−N/2+1

The DFT can be computed as is, by implementing the formula (6.7) di-
rectly on a computer. The complexity of this calculation is a O(N2), since
there are N values of j, and there are N values of k over which the compu-
tation must be repeated.

There is, however, a smart algorithm that allows to group the compu-
tation of all the fk in complexity O(N logN). It is called the fast Fourier
transform (FFT). It is traditionally due to Tukey and Cooley (1965), but the
algorithm had been discovered a few times before that by people who are not
usually credited as much: Danielson and Lanczos in 1942, and well as Gauss
in 1805.

The trick of the FFT is to split the samples of f into even samples (j
even) and odd samples (j odd). Assume that N is a power of 2. Then

N

f̂ = h
∑

e−ikjhk fj
j=1

N/2

= h
∑ N/2

e−ik(2j)hf2j + h
∑

e−ik(2j+1)hf2j+1

j=1 j=1

N/2

= h
∑ N/2

e−ikj(2h)f + heikh2j

j=1

∑
e−ikj(2h)f2j+1.

j=1
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6.4. SMOOTHNESS AND TRUNCATION

The first term on the last line is simply the DFT of length N/2, on a
grid of spacing 2h, of the even samples of f . The second term is, besides the
multiplicative factor, the DFT of length N/2, on a grid of spacing 2h, of the
odd samples of f .

Note that those smaller DFTs would normally be only calculated for
k = −N + 1, . . . , N , but we need them for k =

4 4
−N + 1, . . . , N . This is not

2 2

a big problem: we know that the DFT extends by periodicity outside the
ˆstandard bounds for k, so all there is to do is copy fk by periodicity outside

of k = −N + 1, . . . , N .
4 4

Already, we can see the advantage in this reduction: solving one problem
of size N is essentially reduced to solving two problems of size N/2. Even
better, the splitting into even and odd samples can be repeated recursively
until the DFT are of size 1. When N = 1, the DFT is simply multiplication
by a scalar.

At each stage, there are O(N) operations to do to put together the sum-
mands in the equation of the last line above. Since there are O(logN) levels,
the overall complexity is O(N logN).

There are variants of the FFT when N is not a power of 2.

6.4 Smoothness and truncation

In this section, we study the accuracy of truncation of Fourier transforms
to finite intervals. This is an important question not only because real-
life numerical Fourier transforms are restricted in k, but also because, as
we know, restriction in k serves as a proxy for sampling in x. It will be
apparent in Chapter 2, section 2.1 that every claim that we make concerning
truncation of Fourier transforms will have an implication in terms of accuracy
of sampling a function on a grid, i.e., how much information is lost in the
process of sampling a function f(x) at points xj = jh.

We will manipulate functions in the spaces L1, L2, and L∞. We have
already encountered L1.

Definition 19. Let 1 ≤ p < ∞. A function f of x ∈ R is said to belong to
the space Lp(R) when ∫ ∞

|f(x)|p dx <∞.
−∞

1/p

Then the norm of f in Lp(R) is ‖f‖p =
(∫∞
−∞ |f(x)|p dx

)
.
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A function f of x ∈ R is said to belong to L∞ when

ess sup |f(x)| <∞.

Then the norm of f in L∞(R) is ess sup |f(x)|.

In the definition above, “ess sup” refers to the essential supremum, i.e.,
the infimum over all dense sets X ⊂ R of the supremum of f over X. A
set X is dense when R\X has measure zero. The notions of supremum and
infimum correspond to maximum and minimum respectively, when they are
not necessarily attained. All these concepts are covered in a real analysis
class. For us, it suffices to heuristically understand the L∞ norm as the
maximum value of the modulus of the function, except possibly for isolated
points of discontinuity which don’t count in calculating the maximum.

It is an interesting exercise to relate the L∞ norm to the sequence of Lp

norms as p→∞.
We will need the very important Parseval and Plancherel identitites. They

express “conservation of energy” from the physical domain to the frequency
domain.

Theorem 12. (Parseval’s identity). Let f, g ∈ L1(R) ∩ L2(R). Then∫ ∞ 1 ∞
ˆf(x)g(x) dx =

∫
f(k)ĝ(k) dk.

2π−∞ −∞

Proof. Let h be the convolution f ? g̃, where g̃(x) = g(−x). It is easy to see
that the Fourier transform of g̃ is ĝ(k) (why?). By the convolution theorem
(Section 1.1), we have

ˆ ˆh(k) = f(k) ĝ(k).

If we integrate this relation over k ∈ R, and divide by 2π, we get the IFT at
x = 0:

1
h(0) =

2π

∫ ∞
f̂(k)ĝ(k) dk.

−∞

On the other hand,

∞ ∞
h(0) =

∫
f(x)g(−(0− x)) dx =

−∞

∫
f(x)g(x) dx.

−∞
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Theorem 13. (Plancherel’s identity). Let f ∈ L1(R) ∩ L2(R). Then∫ ∞
|f(x)|2 1

dx =
2π−∞

∫ ∞
|f̂(k)|2 dk.

−∞

Proof. Apply Parseval’s identity with g = f .

(With the help of these formulas, it is in fact possible to extend their
validity and the validity of the FT to f, g ∈ L2(R), and not simply f, g ∈
L1(R) ∩ L2(R). This is a classical density argument covered in many good
analysis texts.)

We need one more concept before we get to the study of truncation of
Fourier transforms. It is the notion of total variation. We assume that the
reader is familiar with the spaces Ck(R) of bounded functions which are k
times continuously differentiable.

Definition 20. (Total variation) Let f ∈ C1(R). The total variation of f is
the quantity

‖f‖TV =

∫ ∞
|f ′(x)| dx. (6.9)

−∞

For functions that are not C1, the notion of total variation is given by either
expression

f TV = lim

∫ ∞ |f(x)− f(x− h)|‖ ‖ dx = sup |f(x
| |

∑
p+1)

h→0 h−∞ {xp} finite subset of R p

−f(xp)|,

(6.10)
These more general expressions reduce to

∞
−∞ |f

′(x)| dx when f ∈ C1(R).
When a function has finite total variation, we say it is in the space of func-
tions of bounded variation, or BV(R).

∫

The total variation of a piecewise constant function is simply the sum of
the absolute value of the jumps it undergoes. This property translates to a
useful intuition about the total variation of more general functions if we view
them as limits of piecewise constant functions.

The important meta-property of the Fourier transform is that

decay for large |k| corresponds to smoothness in x.
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There are various degrees to which a function can be smooth or rates at
which it can decay, so therefore there are several ways that this assertion
can be made precise. Let us go over a few of them. Each assertion either
expresses a decay (in k) to smoothness (in x) implication, or the converse
implication.

• ˆLet f ∈ L1(R) (decay), then f ∈ L∞(R) and f is continuous (smooth-
ness). That’s because |eikx| = 1, so

1 1| ˆf(x | ≤
∫
| ˆ) eikxf(k)| dk =

∫
|f(k)

2π 2π
| dk,

which proves boundedness. As for continuity, consider a sequence yn →
0 and the formula

1
f(x−

∫
ˆyn) = eik(x−yn)f(k) dk.

2π

The integrand converges pointwise to eikxf̂(k), and is uniformly bounded
ˆin modulus by the integrable function |f(k)|. Hence Lebesgue’s dom-

inated convergence theorem applies and yields f(x − yn) → f(x), i.e.,
continuity in x.

• ˆLet f(k)(1 + |k|p) ∈ L1(R) (decay). Then f ∈ Cp (smoothness). We
saw the case p = 0 above; the justification is analogous in the general
case. We write

| (n) 1| ≤
∫
| ikx n ˆ ˆf (x) e (ik) f(k)| dk ≤

∫
|k|n|f(k)| dk,

2π

which needs to be bounded for all 0 n p. This is obviously the
ˆcase if f(k)(1 + |k|p 1

≤ ≤
) ∈ L (R). Continuity of f (p) is proved like before.

• Let f ∈ BV(R ˆ) (smoothness). Then f(k) ≤ ‖f‖TV |k|−1 (decay). If
f ∈ C1 ∩BV (R), then this is justified very simply from (6.9), and

ˆikf(k) =

∫
e−ikxf ′(x) dx.

Take a modulus on both sides, and get the desired relation

|k||f̂(k)| ≤
∫
|f ′(x)|dx = ‖f‖TV <∞.
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6.4. SMOOTHNESS AND TRUNCATION

When f ∈ BV (R), but f ∈/ C1, either of the more general formulas
(6.10) must be used instead. It is a great practice exercise to articulate
a modified proof using the limh 0 formula, and properly pass to the→
limit.

• Let f such that f (k) ∈ L2(R) for 0 ≤ k < p, and assume that f (p)

ˆ
∈

BV(R) (smoothness). Then there exists C > 0 such that |f(k)| ≤
|k|−p−1 (decay). This claim is also formulated as point (a) in Theo-
rem 1 on page 30 of Trefethen’s “Spectral methods in Matlab”. The
justification is very simple when f ∈ Cp+1: we then get

(ik)p+1f̂(k) =

∫
e−ikxf (p+1)(x) dx,

so

|k|p+1|f̂(k)| ≤
∫
|f (p+1)(x)| dx = ‖f (p)‖TV <∞.

Again, it is a good exercise to try and extend this result to functions
not in Cp+1.

• (This is the one we’ll use later). (Same proof as above.)

ˆIn summary, let f have p derivatives in L1. Then |f(k)| ≤ C|k|−p. This
is the form we’ll make the most use of in what follows.

Example 21. The canonical illustrative example for the two statements in-
volving bounded variation is that of the B-splines. Consider

1
s(x) = χ[

2
−1,1](x),

the rectangle-shaped indicator of [−1, 1] (times one half). It is a function in
BV (R), but it has no derivative in L2(R). Accordingly, its Fourier transform
ŝ(k) is predicted to decay at a rate ∼ |k|−1. This is precisely the case, for we
know

sin k
ŝ(k) = .

k

Functions with higher regularity can be obtained by auto-convolution of s; for
instance s2 = s ? s is a triangle-shaped function which has one derivative in
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L2, and such that s′2 ∈ BV (R). We anticipate that ŝ2(k) would decay like
|k|−2, and this the case since by the convolution theorem

2

ŝ (k) = (ŝ(k))2 sin
=

(
k

2
k

)
.

Any number of autoconvolutions s?s . . . ? s can thus be considered: that’s the
family of B-splines.

The parallel between smoothness in x and decay in k goes much further.
We have shown that p derivatives in x very roughly corresponds to an inverse-
polynomial decay |k|−p in k. So C∞ functions in x have so called super-
algebraic decay in k: faster than Cp|k|−p for all p ≥ 0.

The gradation of very smooth functions goes beyond C∞ functions to
include, in order:

• analytic functions that can be extended to a strip in the complex plane
(like f(x) = 1/(1+x2)), corresponding to a Fourier transform decaying

ˆexponentially (in this case f(k) = πe−|k|). That’s Paley-Wiener theory,
the specifics of which is not material for this course.

• analytic functions that can be extended to the whole complex plane
with super-exponential growth (like f(x) = e−x

2/2), whose Fourier
ˆtransform decays faster than exponentially (in this case f(k) =

√
π/2e−k

2/2).

• analytic functions that can be extended to the whole complex plane
with exponential growth at infinity (like f(x) = sinx), whose Fourier

x
ˆtransform is compactly supported (in this case f(k) = 2πχ[−1,1](k)).

That’s Paley-Wiener theory in reverse. Such functions are also called
bandlimited.

More on this in Chapter 4 of Trefethen’s book.
An important consequence of a Fourier transform having fast decay is

that it can be truncated to some large interval k ∈ [−N,N ] at the expense
of an error that decays fast as a function of N . The smoother f , the faster
f̂ decays, and the more accurate the truncation to large N in frequency. On
the other hand, there may be convergence issues if f(x) is not smooth.

To make this quantitative, put

ˆ ˆfN(k) = χ[−N,N ](k)f(k).
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6.4. SMOOTHNESS AND TRUNCATION

Recall that 1
∫ N

eikxdx = sin(Nx) . By the convolution theorem, we therefore
2π −N πx

have
sinNx

fN(x) = ? f(x).
πx

In the presence of f ∈ L2(R), letting N →∞ always gives rise to conver-
gence fN → f in L2(R). This is because by Plancherel’s identity,

‖f − f 2 1 ∞
ˆ ˆ 2 1 ˆ 2

N‖2 = |fN(k)− f(k)| dk = f(k) dk
2π

∫
.

2π

∫
|k|>N

| |
−∞

ˆThis quantity tends to zero as N →∞ since the integral R |f(k)|2 over the
whole line is bounded.

The story is quite different if we measure convergence

∫
in L∞ instead of

L2, when f has a discontinuity. Generically, L∞ (called uniform) convergence
fails in this setting. This phenomenon is called Gibb’s effect, and manifests
itself through ripples in reconstructions from truncated Fourier transforms.
Let us illustrate this on the Heaviside step function

0;
u(x)

{
1 if x

=
≥

0 if x < 0.

(It is not a function in L2(R) but this is of no consequence to the argument.
It could be modified into a function in L2(R) by some adequate windowing.)
Since u(x) is discontinuous, we expect the Fourier transform to decay quite
slowly. Consider the truncated FT

ûN(k) = χ[−N,N ](k)û(k).

Back in the x domain, this is

sinNx
uN(x) = ? u(x)

πx

=

∫ ∞ sinN(x− y)
dy∫0 π(x− y)

Nx sin y
= dy

πy−∞

≡ s(Nx).

(Draw picture)
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The function s(Nx) is a sigmoid function going from 0 at −∞ to 1 at∞,
going through s(0) = 1/2, and taking on min. value ' −.045 at x = −π/N
and max. value ' 1.045 at x = π/N . The oscillations have near-period π/N .
The parameter N is just a dilation index for the sigmoid, it does not change
the min. and max. values of the function. Even as N →∞, there is no way
that the sigmoid would converge to the Heaviside step in a uniform manner:
we always have

‖u− uN‖∞ & .045.

This example of Gibb’s effect goes to show that truncating Fourier expan-
sions could be a poor numerical approximation if the function is nonsmooth.

However, if the function is smooth, then everything goes well. Let us
study the decay of the approximation error

ε2N = ‖f − fN‖22
for truncation of the FT to [−N,N ]. Again, we use Plancherel to get

ε2N =

∫
f̂(k) 2 dk

|k
|

|>N
|

ˆNow assume that f(k) ≤ C|k −p

ε2N ≤ C

∫| , a scenario already considered earlier. Then

|k|−2p

|k|>N
≤ C ′N−2p+1,

so, for some constant C ′′ (dependent on p but independent of N , hence called
constant),

εN ≤ C ′′N−p+1/2.

The larger p, the faster the decay as N →∞.
When a function is C∞, the above decay rate of the approximation error

is valid for all p > 0. When the function is analytic and the Fourier trans-
form decays exponentially, the decay rate of the approximation error is even
faster, itself exponential (a good exercise). In numerical analysis, either such
behavior is called spectral accuracy.

6.5 Chebyshev expansions

Chebyshev expansions, interpolation, differen-
tiation, and quadrature rules are not part of
the material for 18.330 in 2012.
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6.5. CHEBYSHEV EXPANSIONS

In the previous sections, we have seen that smooth functions on the real
line have fast decaying Fourier transforms.

On a finite interval, a very similar property hold for Fourier series: if a
function is smooth in [−π, π] and connects smoothly by periodicity at x = −π
and x = π, then its Fourier series (6.5) decays fast. Periodicity is essential,
because the points x = −π and x = π play no particular role in (6.5). They
might as well be replaced by x = 0 and x = 2π for the integration bounds.
So if a function is to qualify as smooth, it has to be equally smooth at x = 0
as it is at x = −π, identified with x = π by periodicity.

For instance if a function f is smooth inside [−π, π], but has f(−π) =
f(π), then for the purpose of convergence of Fourier series, f is considered
discontinuous. We know what happens in this case: the Gibbs effect takes
place, partial inverse Fourier series have unwelcome ripples, and convergence
does not occur in L∞.

If f is smooth and periodic, then it is a good exercise to generalize the
convergence results of the previous section, from the Fourier transform to
Fourier series.

How shall we handle smooth functions in intervals [a, b], which do not
connect smoothly by periodicity? The answer is not unique, but the most
standard tool for this in numerical analysis are the Chebyshev polynomials.

For simplicity consider x ∈ [−1, 1], otherwise rescale the problem. Take
a Ck nonperiodic f(x) in [−1, 1]. The trick is to view it as g(θ) = f(cos θ).
Since cos[0, π] = cos[π, 2π] = [−1, 1], all the values of x ∈ [−1, 1] are covered
twice by θ ∈ [0, 2π]. Obviously, at any point θ, g inherits the smoothness of
f by the chain rule. Furthermore, g is periodic since cos θ is periodic. So g is
exactly the kind of function which we expect should have a fast converging
Fourier series:

2π 1
∞

ĝ

∫
ik

k = e− θg(θ) dθ, g(θ) =
∑

eikθĝk, k ∈ Z.
0 2π

k=−∞

Since g(θ) is even in θ, we may drop the sin θ terms in the expansion, as well
as the negative k:

2

gk =

∫ π 1 1
∞

ˆ cos (kθ)g(θ) dθ, g(θ) = ĝ0 + cos
0 2π π

∑
(kθ)ĝk, k

k=1

∈ Z+.

6
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Back to f , we find

ĝk = 2

∫ 1 dx 1 1
∞

cos (k arccosx)f(x) √ , f(x) = ĝ0+
∑

cos (k arccosx)ĝ
π−1 1− k, k

x2 2 π
k=1

∈ Z+.

The function cos(k arccosx) happens to be a polynomial in x, of order
k, called the Chebyshev polynomial of order k. Switch to the letter n as is
usually done:

Tn(x) = cos(n arccosx), x ∈ [−1, 1].

The first few Chebyshev polynomials are

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1.

It is a good exercise (involving trigonometric identities) to show that they
obey the recurrence relation

Tn+1(x) = 2xTn(x)− Tn−1(x).

The orthogonality properties of Tn(x) over [−1, 1] follows from those of
cos(nθ) over [0, π], but watch the special integration weight:∫ 1 dx

Tm(x)Tn(x) √ = c
1 1− nδmn,

x2−

with cn = π/2 if n = 0 and cn = π otherwise. The Chebyshev expansion of
f is therefore

∞

〈f, T 〉 =

∫ 1 dx 1 2
n Tn(x)f(x) √ , f(x) = 0

1 x2 π
〈f, T 〉+ Tn(x)

π
〈f, Tn〉, k ∈ Z+.

−1 −

∑
n=1

Under the hood, this expansion is the FS of a periodic function, so we can
apply results pertaining to Fourier series and Fourier transforms to obtain
fast decay of Chebyshev expansions. This way, spectral accuracy is restored
for nonperiodic functions defined on an interval.
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