7 Homework Solutions

18.335 - Fall 2004

7.1 Compute the smallest eigenvalue of the 100×100 Hilbert matrix $H_{ij} = 1/(i+j-1)$. (Hint: The Hilbert matrix is also Cauchy. The determinant of a Cauchy matrix $C(i,j) = 1/(x_i+y_j)$ is $\det C = \prod\limits_{i < j} (x_j-x_i)(y_j-y_i) / \prod\limits_{i,j} (x_i+y_j)$. Any submatrix of a Cauchy matrix is also Cauchy. You can use Cramer's rule in order to compute accurate formulas for H^{-1} and then compute its largest eigenvalue)

We use Cramer's rule

$$H_{ij}^{-1} = (-1)^{i+j} \frac{\det(C_{ij})}{\det(H)}$$

together with the formula given for the determinant with $x_i = i$ and $y_j = j - 1$ to get H_{ij}^{-1} :

$$H_{ij}^{-1} = (-1)^{i+j} \frac{\prod_{\substack{r < s \\ r \neq i, s \neq j}} (x_s - x_r) (y_s - y_r)}{\prod_{\substack{r < i, s \neq j \\ r \neq i, s \neq j}} \frac{\prod_{\substack{i,j \\ (y_s + x_r)}} \prod_{\substack{i,j \\ i < j}} (x_i + y_j)}{\prod_{\substack{i,j \\ (x_j - x_i) (y_j - y_i)}} \frac{\prod_{\substack{i,j \\ (x_j - x_i) (y_j - y_i)}}{\prod_{\substack{i < j \\ (x_j - x_i) (x_j - x_i) (x_j - x_j)}} \frac{\prod_{\substack{i,j \\ (x_j - x_i) (x_j - x_i) (x_j - x_j)}}{\prod_{\substack{i < j \\ (x_j - x_i) (x_j - x_i) (x_j - x_j)}} \frac{\prod_{\substack{i,j \\ (x_j - x_i) (x_j - x_i) (x_j - x_j)}}{\prod_{\substack{i < j \\ (x_j - x_i) (x_j - x_i) (x_j - x_j)}} \frac{\prod_{\substack{i,j \\ (x_j - x_i) (x_j - x_i) (x_j - x_j)}}{\prod_{\substack{i < j \\ (x_j - x_i) (x_j - x_i) (x_j - x_j)}} \frac{\prod_{\substack{i,j \\ (x_j - x_i) (x_j - x_i) (x_j - x_j)}}{\prod_{\substack{i < j \\ (x_j - x_i) (x_j - x_i) (x_j - x_j)}} \frac{\prod_{\substack{i,j \\ (x_j - x_i) (x_j - x_i) (x_j - x_j)}}{\prod_{\substack{i,j \\ (x_j - x_i) (x_j - x_j) (x_j - x_j)}}} \frac{\prod_{\substack{i,j \\ (x_j - x_i) (x_j - x_i) (x_j - x_j)}}{\prod_{\substack{i,j \\ (x_j - x_i) (x_j - x_j) (x_j - x_j)}} \frac{\prod_{\substack{i,j \\ (x_j - x_i) (x_j - x_j) (x_j - x_j)}}{\prod_{\substack{i,j \\ (x_j - x_i) (x_j - x_j) (x_j - x_j)}}} \frac{\prod_{\substack{i,j \\ (x_j - x_i) (x_j - x_j) (x_j - x_j)}}{\prod_{\substack{i,j \\ (x_j - x_i) (x_j - x_j) (x_j - x_j)}}} \frac{\prod_{\substack{i,j \\ (x_j - x_i) (x_j - x_j) (x_j - x_j)}}}{\prod_{\substack{i,j \\ (x_j - x_j) (x_j - x_j) (x_j - x_j) (x_j - x_j)}}} \frac{\prod_{\substack{i,j \\ (x_j - x_j) (x_j - x_j) (x_j - x_j)}}}{\prod_{\substack{i,j \\ (x_j - x_j) (x_j - x_j) (x_j - x_j) (x_j - x_j)}}} \frac{\prod_{\substack{i,j \\ (x_j - x_j) (x_j - x_j) (x_j - x_j)}}}{\prod_{\substack{i,j \\ (x_j - x_j) (x_j - x_j) (x_j - x_j) (x_j - x_j)}}} \frac{\prod_{\substack{i,j \\ (x_j - x_j) (x_j - x_j) (x_j - x_j)}}} \frac{\prod_{\substack{i,j \\ (x_j - x_j) (x_j - x_j) (x_j - x_j)}}}{\prod_{\substack{i,j \\ (x_j - x_j) (x_j - x_j) (x_j - x_j)}}} \frac{\prod_{\substack{i,j \\ (x_j - x_j) (x_j - x_j) (x_j - x_j) (x_j - x_j)}}}{\prod_{\substack{i,j \\ (x_j - x_j) (x_j - x_j) (x_j - x_j) (x_j - x_j)}}} \frac{\prod_{\substack{i,j \\ (x_j - x_j) (x_j - x_j) (x_j - x_j)}}}}{\prod_{\substack{i,j \\ (x_j - x_j) (x_j - x_j) (x_j - x_j) (x_j - x_j)}}} \frac{\prod_{\substack{i,j \\ (x_j - x_j) (x_j - x_j) (x_j - x_j)}}}} \frac{\prod_{\substack{i,j \\ (x_j - x_j) (x_j - x_j) (x_j - x_j) (x_j - x_j)}}}} \frac{\prod_{\substack{i,j \\ (x_j - x_j) (x_j - x_j) (x_j - x_j)}}}} \frac{\prod_{\substack{i,j \\ (x_j - x_j)$$

Having computed the coefficients of H^{-1} we may use any iterative scheme to estimate the largest eigenvalue which can be inverted to obtain the smallest eigenvale of H. Alternatively one could use a simple matlab command:

$$\lambda_{\min}(H) = \frac{1}{\lambda_{\max}(H^{-1})} = 1/\max(\text{eig(invhilb(100))}) = 5.779700862834800e-151$$

7.2 Trefethen 30.2

- Jacobi algorithm
 - Calculation of $J: \mathcal{O}(1)$ flops

 $J^T A$ alters 2 rows of A only \Rightarrow 3 ops \times 2m elements $\Rightarrow \mathcal{O}(6m)$ flops $(J^T A) J$ alters 2 columns $\Rightarrow \mathcal{O}(6m)$ flops.

In total we need $\mathcal{O}(12m)$ flops for a single step of Jacobi algorithm (Half in case A is symmetric)

In a single sweep we need $\sim m^2 \mathcal{O}(12m)/2 = \mathcal{O}(6m^3)$ flops (not counting convergence iterations).

• QR Requires $\mathcal{O}(4m^3/3)$, a much better algorithm!