3 Homework Solutions
18.335 - Fall 2004

3.1 Trefethen 10.1

(a) H = I —2vv* where ||v]] = 1. If v*u = 0 ( w is perpendicular to v ),
then Hu = v — 2vv*u = u. So 1 is an eigenvalue with multiplicity n — 1
( there are n — 1 linearly independent eigenvectors perpendicular to v ).
Also Hv = v — 2vv*v = v — 20 = —v, so —1 is an eigenvalue of H. The
geometric interpretation is given by the fact that reflection of v is —v, and
reflection of any vector perpendicular to v is v itself.

(b) det H =[N =(-11""' =1
i=1
(c) H*H = (I —2vv*)" (I — 2vv*) = I — 4vv* + 4ov*vv* = I. So the singular
values are all 1’s.

3.2 Let B be an 1 X N upper bidiagonal matrix. Describe an algorithm
for computing the condition number of B measured in the infinity

norm in O(n) time.

The condition number of B in the infinity norm is defined as:
Roo (B) = ||Bil||oO HB”oo

We have to compute these two matrix norms separately. For ||B|| , the op-
eration count is O (n) since only n — 1 operations (corresponding to row sums
for the first n — 1 rows) are required. In order to calculate HB*1 HOO we need to
compute B~ first. To do so, let C = B~!. Performing the matrix multiplica-
tion BC' = I, one can see that the inverse is an upper triangular matrix whose
entries are given by:
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This enables us to compute the infinity norm of B~ :
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Normally, doing this directly would require O (nz) flops. We can avoid this
many flops by making some simplifications. Let:
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and notice that the row sum, P; can be written as:
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Thus knowing P;;; we can calculate P; in 5 operations. Hence we have to

start from the n-th row and proceed backwards. So our algorithm to compute
HB_1H is:
o0

__ > _|Ip-t
P, = o] HB HOO }2 flops

for i=n-1tol
p_ 1+ |biig1| Pita
! |bs4 O (n) flops
HB_I Hoo = max (Pi, Pi+1)
end

Since both ||B’1||Oo and || B||, require O (n) flops, so does koo (B) .



