
Chapter 8


8.1 Gaussian Elimination 

The process of Gaussian elimination is a fundamental tool in solving linear systems of equations. 

Example 1: Consider the linear system: 

x1 + x2 + x3 = 3 (8.1) 

x1 + 2x2 + 4x3 = 7 (8.2) 

x1 + 3x2 + 9x3 = 13 (8.3) 

The traditional way of solving this system is to subtract the first equation from the second and 

the third to obtain 

x1 + x2 + x3 = 3 (8.4) 

x2 + 3x3 = 4 (8.5) 

2x2 + 8x3 = 12 (8.6) 

Now subtract 2 times the second equation from the third to obtain 

x1 + x2 + x3 = 3 (8.7) 

x2 + 3x3 = 4 (8.8) 

2x3 = 2 (8.9) 

Now we can perform back substitution: 

x3 = 1 (8.10) 
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x2 = 3 − 3x3 = 4 − 3 · 1 = 1 (8.11) 

x1 = 3 − x2 − x3 = 3 − 1 − 1 = 1. (8.12) 

Instead of performing the same process for every right hand side, it is more advantageous to use 

matrix factorizations instead. Write the System 8.1-8.3 as 

⎤⎡⎤⎡⎤⎡ 

1 1 1 x1 3 
⎢
⎣ 1 2 4

⎥
⎦ ·

⎢
⎣ x2

⎥
⎦ =

⎢
⎣ 7

⎥
⎦ (8.13) 

1 3 9 x3 13 

In general linear systems are written as 

Ax = b (8.14) 

or 

⎡⎤⎡⎤⎡ ⎤

b1. . . a1n x1a11 a12 
⎢
⎢
⎢
⎢
⎣ 

. . . a2na21 a22 

. . . . . . . . . . . . 

⎥
⎥
⎥
⎥
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· 

⎢
⎢
⎢
⎢
⎣ 

x2 

. . . 

⎥
⎥
⎥
⎥
⎦ 

= 

⎢
⎢
⎢
⎢
⎣ 

⎥
⎥
⎥
⎥
⎦ 

b2 

. . . 
(8.15) 

an1 an2 . . . ann xn bn 

where we assume that leading principal minors A(1 : k, 1 : k), k = 1, 2, . . . , n, of the n-by-n 

matrix A = [aij ]
n 
i,j=1 are nonzero. 

Some linear systems are easy to solve. For example if A is triangular or diagonal. 

If A is (lower or upper) triangular nonsingular matrix then Ax = b can be solved via back 

substitution. The system 

⎡⎤⎡⎤⎡ ⎤

b1a11 x1 
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⎢
⎢
⎢
⎣ 

⎥
⎥
⎥
⎥
⎦ 

· 

⎢
⎢
⎢
⎢
⎣ 

x2 

. . . 

⎥
⎥
⎥
⎥
⎦ 

= 

⎢
⎢
⎢
⎢
⎣ 

⎥
⎥
⎥
⎥
⎦ 

b2 

. . . 

a21 a22 
(8.16) . . . . . . . . . 

an1 an2 . . . ann xn bn 

(the zero entries of the upper triangular part have been omitted) is equivalent to 

a11x1 = b1 (8.17) 

a21x1 + a22x2 = b2 (8.18) 

. . . 

an1x1 + an2x2 + . . . + annxn = bn (8.19) 

and is solved by computing x1 from the first equation, substituting into the second and so on: 
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x1 = 
b1 

(8.20) 
a11 

1 
x2 = (b2 − a21x1) (8.21) 

a21 

. . . 
1 

xn = (bn − an1x1 − an2x2 − . . . − an,n−1xn−1) (8.22) 
ann 

The solution to a diagonal linear system is trivial: 

⎡ ⎡⎤⎡⎤ ⎤

d1 b1x1 
⎢
⎢
⎢
⎢
⎣ 

⎥
⎥
⎥
⎥
⎦ 
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⎢
⎢
⎢
⎢
⎣ 

⎥
⎥
⎥
⎥
⎦ 

= 

⎢
⎢
⎢
⎢
⎣ 

⎥
⎥
⎥
⎥
⎦ 

d2 b2 

. . . 

x2 

. . . 
(8.23). . . 

dn xn bn 

implies xi = bi , i = 1, 2, . . . , n.di 

Definition: A matrix A is called unit lower triangular if aij = 0, 1 ≤ i < j ≤ n and aii = 1, 

1 ≤ i ≤ n. 

An unit upper triangular matrix is defined analogously. 

Example: The following 4-by-4 matrix is unit lower triangular 

⎡ 

⎢
⎢
⎢
⎣ 

1 

2 1 

3 5 1 

4 6 7 1 

⎤ 

⎥
⎥
⎥
⎦ 

(8.24) 

Exercise: Prove that if A and B are unit lower triangular matrices, then so are A−1 and AB. 

Definition: Let A be a nonsingular matrix, then a decomposition of A as a product of a unit 

lower triangular matrix L, a diagonal matrix D and a unit upper triangular matrix U : 

A = LDU (8.25) 

is called an LDU decomposition of A. 

The main idea in what follows is to use Gaussian elimination to compute the LDU decomposition 

of A. 

Once we have the LDU decomposition of A, the equation Ax = b becomes LDUx = b, which is 

easy to solve. First compute the solution y to the lower triangular system Ly = b, then the solution 

z to the diagonal system Dz = y, and finally the solution x to the upper triangular system Ux = z. 

Finally, 

Ax = LDUx = LD(Ux) = L(Dz) = Ly = b (8.26) 

as desired.


So how does one compute the LDU decomposition of a nonsingular matrix A?
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First we represent a subtraction of a multiple of one row from another in matrix form. Consider 

the matrix: 

⎡ ⎤

1 1 1 
⎢
⎣ 

⎥
⎦ (8.27) 1 2 4 

3 9 27 

In order to introduce a zero in position (3, 1) we need to subtract 3 times the first row from the 

third. This is equivalent to multiplication by the matrix 

⎤⎡ 

1 
⎢
⎣ 

⎥
⎦ (8.28) 0 1 

−3 0 1 

namely 

⎤⎡⎤⎡⎤⎡ 

1 1 1 1 1 1 1 
⎢
⎣ 0 1

⎥
⎦ ·

⎢
⎣ 1 2 4

⎥
⎦ =

⎢
⎣ 1 2 4

⎥
⎦ (8.29) 

−3 0 1 3 9 27 0 6 24 

Since 

−1⎡ ⎤ ⎡ ⎤

1 1 
⎢
⎣ 

⎥
⎦ 

⎢
⎣ 

⎥
⎦ (8.30) 0 1 0 1= 

−3 0 1 3 0 1 

the equality 8.29 implies 

⎤⎡⎤⎡⎤⎡ 

1 1 1 1 1 1 1 
⎢
⎣ 1 2 4

⎥
⎦ =

⎢
⎣ 0 1

⎥
⎦ ·

⎢
⎣ 1 2 4

⎥
⎦ (8.31) 

3 9 27 3 0 1 0 6 24 

Next, subtract the first row from the second to analogously obtain 

⎡ ⎡⎤ ⎡⎤ ⎤

1 1 1 1 1 1 1 
⎢
⎣ 

⎥
⎦ =

⎢
⎣ 

⎥
⎦ ·

⎢
⎣ 

⎥
⎦ (8.32) 1 2 4 1 1 0 1 3 

0 6 24 0 0 1 0 6 24 

Now observe that the matrices used for elimination combine very nicely: 

⎡ ⎡⎤ ⎡⎤ ⎤

1 1 1 
⎢
⎣ 

⎥
⎦ ·

⎢
⎣ 

⎥
⎦ =

⎢
⎣ 

⎥
⎦ (8.33) 0 1 1 1 1 1 

3 0 1 0 0 1 3 0 1 

therefore 
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⎡ ⎡⎤ ⎡⎤ ⎤

1 1 1 1 1 1 1 
⎢
⎣ 

⎥
⎦ =

⎢
⎣ 

⎥
⎦ ·

⎢
⎣ 

⎥
⎦ (8.34)1 2 4 1 1 0 1 3 

3 9 27 3 0 1 0 6 24 

Then continue by induction–subtract 6 times the second row from the third, obtaining the de­

composition 

⎤⎡⎤⎡⎤⎡ 

1 1 1 1 1 1 1 
⎢
⎣ 0 1 3

⎥
⎦ =

⎢
⎣ 0 1

⎥
⎦ ·

⎢
⎣ 0 1 3

⎥
⎦ (8.35) 

0 6 24 0 6 1 0 0 6 

Therefore 

⎡ ⎡⎤ ⎡⎤ ⎡⎤ ⎤

1 1 1 1 1 1 1 1 
⎢
⎣ 

⎥
⎦ =

⎢
⎣ 

⎥
⎦ ·

⎢
⎣ 

⎥
⎦ ·

⎢
⎣ 

⎥
⎦ (8.36)1 2 4 1 1 0 1 0 1 3 

3 9 27 3 0 1 0 6 1 0 0 6 

⎤⎡⎤⎡ 

1 1 1 1 
⎢
⎣ 1 1

⎥
⎦ ·

⎢
⎣ 0 1 3

⎥
⎦ (8.37)= 

3 6 1 0 0 6 

⎡⎤ 

1 1 1 1 1 

�
⎡

�
⎤⎤⎡ 

⎢
⎣ 1 1

⎥
⎦ ·

⎢
⎣ 1

⎥
⎦ ·

⎢
⎣ 1 3

⎥
⎦ (8.38)= 

3 6 1 6 1 

L D U 

Algorithm: [Gaussian Elimination] The following algorithm computes the LDU decomposition 

of a matrix A whose leading principal minors are nonzero. 

l

U = A, L = I, D = I


for i = 1 : n − 1


for j = i + 1 : n


ji = uji/uii


uj,i:n = uj,i:n − ljiui,i:n 

endfor


dii = uii 

ui,i:n = ui,i:n/dii 

endfor


8.2 Pivoting, Partial and Complete 

P1A = L1A1 (8.39) 
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P2A2 = L2A2 (8.40) 

· · · 

A = PT 
1 L1A1 

= PT 
1 L1P

T 
2 L2A2 

= PT 
1 L1P

T 
2 L2P

T 
3 L3U 

= PT 
1 P

T 
2 P

T 
3 ((P

T 
2 P

T 
3 )

−1L1P
T 
2 P

T 
3 )(P3L2P

T 
3 )L3U 

= PT 
1 P

T 
2 P

T 
3 L1L2L3U 

= PT LU (8.41) 

Complete pivoting: two sided 

A = PT LUQT (8.42) 

Operation count: 2 
3n3 for GENP and GEPP, for complete pivoting 

n 2 + (n − 1)2 + · · · = 
n(n + 1)(2n + 1) 

6 

= 
2 

3 
n 3 additional (8.43) 

8.3 Stability of GE 

Example: 

A = LU (8.44) 
� 

10−16 1 
� � 

1 0 
� � 

10−16 1 
� 

1 1 
= 

1016 1 0 1 − 1016 
(8.45) 

�A� = O(1) (8.46) 

�L� , �U� = O(1016) (8.47) 

Ax = b (8.48) 

LUx = x (8.49) 

Ly = b (8.50) 

Ux = y (8.51) 

(L + δL)ŷ = b (8.52) 

�δL� 

�L� 
= O(�) (8.53) 

�δL� = O(1) (8.54) 

(U + δU)x̂ = y (8.55) 
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�δU� 

�U� 
= O(�) (8.56) 

�δU� = O(1) (8.57) 

(L + δL)(U + δU)x̂ = b (8.58) 

A + δLU + UδL + δLδU = O(1 · 1016 + 1 · 1016 + 1 · 1) 
� �� � 

δA 

= O(1016) (8.59) 

�δA� 

�A� 
= O(1016), (8.60) 

while we expected �. 

Theorem: A: nonsingular. Let A = LU be computed by GENP in floating point arithmetic. If A 

has an LU factorization, then for sufficiently small �machine, the factorization completes successfully 

and 

L ˜˜U = A + δA (8.61) 

where, 

�δA� 
= O(�machine) (8.62) 

�L� · �U�


for some δA ∈ Cn×n .


Backward Stability?


Need


�δA� 
= O(�machine) (8.63) 

�A� 

then 

backward stability ⇔ �L� · �U� = O(�A�) ? (8.64) 

�L�·�U�Need to measure and make sure it is O(�machine). �A� 

No pivoting: unstable.


Partial pivoting:


�L�∞ ≤ n (8.65) 

since 

|lij | < 1 (8.66) 

so the question moves down to the size of 

�U� max |uij |
� ≡ ρ (8.67) 

�A� max |aij | 
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where ρ is called growth factor. 

Therefore, 

L̃Ũ = A + δA (8.68) 

�δA� 

�A� 
= O(ρ�machine) (8.69) 

stable if ρ = O(1). 
1 
2 .Partial Pivoting: ρ ≤ 2n, attainable, but never happens. Usually ≤ n 

, same as QR. Complete Pivoting: ρ = O(1), but cost n4 
3

3 


