CHAPTER 1.

1.4 Orthogonal (Unitary) matrices

Tools of the trade:

Definition:

$$Q^* = Q^{-1} (1.7)$$

i.e., $Q^*Q = I$.

Figure 1.1: Orthogonal Matrices.

$$\langle q_i, q_i \rangle = q_i^* q_i = \delta_{ij} \tag{1.8}$$

Orthogonal matrices preserve length of a vector:

$$\|Qx\|_2 = \|x\|_2 \tag{1.9}$$

Proof:

$$||Qx||_{2}^{2} = (Qx)^{*}Qx$$

$$= x^{*}Q^{*}Qx$$

$$= x^{*}\underbrace{Q^{-1}Q}_{I}x$$

$$= x^{*}x$$

$$= ||x||_{2}^{2}$$
(1.10)

1.5 Vector Norms

Definition: A norm $\|\cdot\|$ is a function from \mathbb{C}^n into \mathbb{R} such that:

- 1. $||x|| \ge 0$, $||x|| = 0 \Leftrightarrow x = 0$
- $2. \ \|x+y\| \le \|x\| + \|y\|$
- $3. \|\alpha x\| = |\alpha| \cdot \|x\|$

Example 1: $1, 2, \infty$ norms:

1.6. MATRIX NORMS 3

$$||x||_1 = \sum |x_i| \tag{1.11}$$

$$||x||_2 = \sqrt{\sum |x_i|^2}$$
 (1.12)
 $||x||_{\infty} = \max_i |x_i|$ (1.13)

$$||x||_{\infty} = \max_{i} |x_i| \tag{1.13}$$

Example 2: Weighted norms:

$$W = \operatorname{diag}(x_i) \Rightarrow ||x||_w = \sqrt{\sum |x_i w_i|^2}$$
(1.14)

1.6 **Matrix Norms**

Same as vector norms, functions from $\mathbb{C}^{n\times n}$ into \mathbb{R} , satisfying:

- 1. $||A|| \ge 0$
- 2. $||A + B|| \le ||A|| + ||B||$
- 3. $\|\alpha A\| = |\alpha| \cdot \|A\|$

Some matrix norms are more useful: Induced Matrix Norms

$$||A|| = \sup_{x} \frac{||Ax||}{||x||} = \sup_{||x||=1} ||Ax||$$
 (1.15)

 $1, 2, \infty$ norms for matrices:

$$||A||_1 = \max_i \sum_j |a_{ij}| \quad \text{max row sum}$$
 (1.16)

$$||A||_2 = \sqrt{\lambda_{\max}(A^*A)}$$
 (1.17)

$$||A||_2 = \sqrt{\lambda_{\max}(A^*A)}$$
 (1.17)
 $||A||_{\infty} = \max_{j} \sum_{i} |a_{ij}|$ max col sum (1.18)

They satisfy $||AB|| \le ||A|| \cdot ||B||$, which is not satisfied by all matrix norms, but it is by the ones induced by vector norms and the Frobenius norm:

$$||A||_F^2 = \left(\sum_{i,j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}} = \sqrt{\operatorname{tr}(A^*A)}$$
 (1.19)

CHAPTER 1.

1.7 Invariance under Unitary Multiplication

Proposition: If Q is unitary $(Q^*Q = I)$, then

$$||QA||_2 = ||A||_2 \tag{1.20}$$

and

$$||QA||_F = ||A||_F. (1.21)$$

Proof: Let $x \colon \left\| QAx \right\|_2 = \left\| QA \right\|_2$

$$||QA||_2 = ||Q(Ax)||_2 = ||Ax||_2 \le ||A||_2 \tag{1.22}$$

Also if y: $||Ay||_2 = ||A||$, then

$$||A||_2 = ||Ay||_2 = ||QAy||_2 \le ||QA||_2 \tag{1.23}$$

thus

$$||A||_2 = ||QA||_2. (1.24)$$

$$||A||_F = \sqrt{\text{tr}(A^*A)} = \sqrt{\text{tr}((QA)^*QA)} = ||QA||_F$$
 (1.25)