CHAPTER 1.

1.8 SVD

Definition: $A \in \mathbb{C}^{m \times n}$, $m \ge n$, the SVD of A is

$$A = U\Sigma V^* \tag{1.26}$$

where, U, V unitary, $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_n), \ \sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n \geq 0.$

$$oxed{A} = oxed{U} oxed{\Sigma} oxed{V}^*$$

Figure 1.2: SVD.

(Continued on next page.)

1.9 Existence and Uniqueness

Theorem: Every matrix A has an SVD. The singular values σ_i are uniquely determined and if A is square and the σ_i are distinct, then u_i and v_i are uniquely determined up to complex signs.

Proof: Let $\sigma_1 = ||A||_2$. Let $||v_1||_2 = 1$ be such that $||Av_1||_2 = ||A|| = \sigma_1$. Let $u_1 = \frac{Av_1}{\sigma_1}$. Consider any extension of u_1 and v_1 to an orthonormal basis U_1 and V_1 .

$$U_1 = [u_1|\cdots] \tag{1.27}$$

$$V_1 = [v_1|\cdots] \tag{1.28}$$

$$u_1^* A v_1 = S$$

$$= \begin{bmatrix} \sigma_1 & w^* \\ 0 & B \end{bmatrix}$$
(1.29)

$$oxed{U_1^*} oxed{A} oxed{V_1} \equiv oxed{S}$$

Figure 1.3: Proof.

Need to show w = 0. Assume $w \neq 0$, then

$$\left\| \begin{bmatrix} \sigma_1 & w^* \\ 0 & B \end{bmatrix} \begin{bmatrix} \sigma_1 \\ w \end{bmatrix} \right\|_2 \ge \left\| \begin{bmatrix} \sigma_1 \\ w \end{bmatrix} \right\|_2^2 \\
\ge \sqrt{\sigma_1^2 + \|w\|_2^2} \cdot \left\| \begin{bmatrix} \sigma_1 \\ w \end{bmatrix} \right\|_2^2 \\
> \sigma_1 \left\| \begin{bmatrix} \sigma_1 \\ w \end{bmatrix} \right\|_2^2. \tag{1.30}$$

Therefore, $\sigma_1 = ||A|| = ||S||_2 > \sigma_1 \to \text{contradiction}.$

Proceed by induction:

$$B = U_2 \Sigma V_2^* \tag{1.31}$$

$$A = \underbrace{u_1 \begin{bmatrix} 1 & 0 \\ 0 & U_2 \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} \sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix}}_{\Sigma} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & V_2 \end{bmatrix}^* v_1^*}_{V^*}$$
(1.32)

Chapter 2

2.1 Uniqueness of SVD (First Proof)

Assume

$$\sigma_1 = ||A|| = ||Av_1|| = ||Aw||_2 \tag{2.1}$$

Need to show v_1 and w differ by a complex sign.

Let

$$v_2 = \frac{w - (v_1^* w) v_1}{\|w - (v_1^* w) v_1\|_2}$$
(2.2)

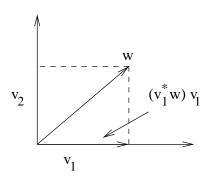


Figure 2.1: Uniqueness.

$$||Av_2||_2 \le \sigma_1 = ||A||_2 \tag{2.3}$$

If

$$||Av_2|| \le 1 \tag{2.4}$$

then

$$w = v_1 c + v_2 s \tag{2.5}$$

$$|s|^2 + |c|^2 = 1 (2.6)$$

$$||Aw||_2 = ||Av_1c|| + ||Av_2s|| < \sigma$$
 (2.7)

Same exercise as before.

Figure 2.2: Exersise.

Chapter 3

3.1 Uniqueness of the SVD (Second Proof)

The singular values are uniquely determined and if A is square and $\sigma_1 > \cdots > \sigma_n \ge 0$ then the left and right singular values are uniquely determined up to complex signs.

Proof: $A = U\Sigma V^*$, A^*A -normal \Rightarrow real eigenvalues. $A^*A = V\Sigma^2 V^* \Rightarrow \sigma_i^2$ eigenvalues of A^*A uniquely determined. σ_i -distinct $\Rightarrow \sigma_i^2$ -distinct $\Rightarrow v_i$ uniquely determined (as the unique solutions to $A^*AV = \sigma_i^2V$) up to a scalar but $\|v_i\|_2 = 1 \Rightarrow$ uniquely determined up to a complex sign.

3.2 Properties of the SVD

- 1. r = rank(A) number of non-zero eigenvalues.
- 2. $||A||_2 = \sigma_1$, $||A||_F = \sqrt{\sum_{i=1}^n \sigma_i^2}$.
- 3. The non-zero σ_i 's are the square roots of the non-zero eigenvalues of A^*A and AA^* .
- 4. $A = A^*$ (Hermitian) $\Rightarrow \sigma_i = |\lambda_i|$.
- 5. $|\det(A)| = \prod \sigma_i$

3.3 Best Rank k Approximation

For any $0 \le \nu \le r$, define

$$A_{\nu} = \sum_{i=1}^{\nu} \sigma_{j} u_{j} v_{j}^{*}. \tag{3.1}$$

(called best rank ν approximation).

Proposition:

$$||A - A_{\nu}||_{2} = \inf_{\text{rank } B \le \nu} ||A - B||_{2} = \sigma_{\nu+1}$$
 (3.2)

 $(\sigma_{n+1} \doteq 0).$

Proof: Suppose $\exists B$, rank $B \leq \nu$:

$$||A - B||_2 < ||A - A_\nu|| = \sigma_{\nu+1} \tag{3.3}$$

Therefore, $\exists (n-\nu)$ -dimensional subspace $W\subseteq\mathbb{C}^n: \forall w\in W$ we have $Bw=0\Rightarrow Aw=(A-B)w$

$$||Aw||_2 = ||(A - B)w||_2 \le ||A - B||_2 \cdot ||w||_2 < \sigma_{\nu+1} ||w||_2$$
 (3.4)

Therefore, we have a $(n - \nu)$ -dimensional subspace W:

$$||Aw|| < \sigma_{\nu+1} ||w|| \tag{3.5}$$

Let $\overline{w} = \operatorname{span}(v_1, \dots, v_{\nu+1})$, then $\dim(\overline{w}) = \nu + 1$ and $\|A\overline{w}\|_2 \ge \sigma_{\nu+1} \|\overline{w}\|_2$, for any $\overline{w} \in \overline{W}$. $\dim(W) + \dim(\overline{W}) = n + 1 \Rightarrow W \cap \overline{W} \ne \{0\}$, therefore, $w \in W \cap \overline{W}$; contradiction.