
��� ���

18.335 Problem Set 2 Solutions

Problem 1: Floating-point
(a) The smallest integer that cannot be exactly represented is n = β t + 1 (for base-β with a t-digit man­

tissa). You might be tempted to think that β t cannot be represented, since a t-digit number, at first

glance, only goes up to β t − 1 (e.g. three base-10 digits can only represent up to 999, not 1000).

However, β t can be represented by β t−1 β 1, where the β 1 is absorbed in the exponent.
·

In IEEE single and double precision, β = 2 and t = 24 and 53, respectively, giving 224 +1 = 16,777,217
and 253 + 1 = 9, 007,199,254,740, 993.

Evidence that n = 253 + 1 is not exactly represented but that numbers less than that are can be found
by looking at the last few decimal digits as we increment the numbers. e.g. the last 3 decimal digits
of m in Matlab are returned by rem(m,1000). rem(2^53-2,1000)=990, rem(2^53-1,1000)=991,
rem(2^53,1000)=992, rem(2^53+1,1000)=992, rem(2^53+2,1000)=994, rem(2^53+3,1000)=996,
and rem(2^53+4,1000)=996. That is, incrementing up to n − 1 increments the last digit as ex­
pected, while going from n − 1 to n the last digit (and indeed, the whole number) doesn’t change,
and after that the last digit increments in steps of 2. In particular, n + 1 and n + 3 are both exactly
represented, because they are even numbers: a factor of two can be pulled into the exponent, since
253 + 2 = (252 + 1) 2 and 253 + 4 = (252 + 2) 2, and hence the significand is still exactly represented. · ·

(b) What we want to show, for a function g(x) with a convergent Taylor series at x = 0, that g(O(ε)) =

g(0)+ g�(0)O(ε). [We must also assume g�(0) =� 0, otherwise it is obviously false.] The first thing we

need to do is to write down precisely what this means. We know what it means for a function f (ε) to

be O(ε): it means that, for ε sufficiently small (0 ≤ ε < δ for some δ), then | f (ε)| < C1ε for some

C1 > 0. Then, by g(O(ε)), we mean g(f (ε)) for any f (ε) ∈ O(ε); we wish to show that f (ε) being

O(ε) implies that

g(f (ε)) = g(0)+ g�(0)h(ε)

for some h(ε) that is also O(ε).

Since g(x) has a convergent Taylor series, we can explicitly write

∞

∑
g(n)(0)1

h(ε) = f (ε)+ f (ε)n .
(0) n!g� n=2

But since | f (ε)| < C1ε for some C1 (and for sufficiently small ε), it immediately follows that ⎡ ⎤
g(n+1)(0)∞

∑
1

h(ε) < C1ε ⎣1 + ⎦C1
n
ε

n| | ,
(0) (n + 1)!|g� n=1|

which is clearly < 2C1ε for sufficiently small ε (and indeed, is < C2ε for any C2 > C1), since the
summation of εn must go to zero as ε 0 [if it doesn’t, it is trivial to show that the Taylor series →
won’t converge to a function with the correct derivative g�(0) at ε = 0].

Problem 2: Addition

(a) We can prove this by induction on n. For the base case of n = 2, f̃ (x) = (0 ⊕ x1) ⊕ x2 = x1 ⊕ x2 =
(x1 +x2)(1+ε2) for |ε2| ≤ εmachine is a consequence of the correct rounding of ⊕ (0 ⊕ x1 must equal
x1, and x1 ⊕ x2 must be within εmachine of the exact result).

1

10
2

10
3

10
4

10
5

10
6

10
−7

10
−6

10
−5

input length n

m
ea

n
er

ro
r

ab
s(

lo
op

su
m

(x
)−

su
m

(x
))

 /
su

m
(a

bs
(x

))

error averaged over 100 x
1.2×10−8 sqrt(n)

Figure 1: Error | f̃ (x) − f (x)|/ ∑i |xi| for random x ∈ [0,1)n, where f̃ is computed by a simple loop in single
precision, averaged over 100 random x vectors, as a function of n. Notice that it fits very well to ≈ 1.2 ×
10−8√n, matching the expected

√
n growth for random errors.

Now for the inductive step. Suppose s̃n−1 = (x1 + x2) ∏n−1
i=3 xi ∏

n−1
k=2(1 + εk) + ∑n−1

k=i (1 + εk). Then
s̃n = s̃n−1 ⊕ xn = (s̃n−1 + xn)(1 + εn) where |εn| < εmachine is guaranteed by floating-point addition.
The result follows by inspection: the previous terms are all multiplied by (1 + εn), and we add a new
term xn(1 + εn).

(b) This is trivial: just multiplying out the terms (1 + εi) (1 + εn) = 1 + ∑n
k=i εk + (products of ε) = · · ·

1 + δi, where the products of εk terms are O(ε2 δimachine), and hence (by the triangle inequality)

∑
n + O(ε2

machine).k=i |εk| machine) ≤ (n − i + 1)εmachine + O(ε2
| | ≤

(c) We have: f̃ (x) = f (x)+(x1 + x2)δ2 + ∑n
i=3 xiδi, and hence (by the triangle inequality):

n

f̃ (x) − f (x) x1 |δ2 ∑ xi δ i| | ≤ | | | +
i=2
| | | |.

But δi machine) for all i, from the previous part, and hence f̃ (x) − f (x)| | ≤ nεmachine + O(ε2 | | ≤
xi .nεmachine ∑

n
i=1 | |

(d) For uniform random εk, since δi is the sum of (n− i+1) random variables with variance ∼ εmachine, it
follows from the usual properties of random walks that the mean |δi| has magnitude ∼

√
n − i + 1O(εmachine) ≤√

nO(εmachine). Hence | f̃ (x) − f (x)| = O
�√

nεmachine ∑
n
i=1 |xi|

�
.

(e) Results of the suggested numerical experiment are plotted in figure 1. For each n, I averaged the error

| f̃ (x) − f (x)|/∑i |xi| over 100 runs to reduce the variance.

2

� �

�

Problem 3: Addition, another way

(a) Suppose n = 2m with m ≥ 1. We will first show that

n m

f̃ (x) = ∑
xi ∏
(1 + εi,k)
i=1 k=1

where |εi,k| ≤ εmachine. We prove the above relationship by induction. For n = 2 it follows from the
definition of floating-point arithmetic. Now, suppose it is true for n and we wish to prove it for 2n.
The sum of 2n number is first summing the two halves recursively (which has the above bound for
each half since they are of length n) and then adding the two sums, for a total result of

n m 2n m

f̃ (x ∈ R2n) = ∑
xi ∏
(1 + εi,k)+ ∑
 xi ∏
(1 + εi,k) (1 + ε)
i=1 k=1 i=n+1 k=1

for |ε| < εmachine. The result follows by inspection, with εi,m+1 = ε .

Then, we use the result from problem 2 that ∏m
k=1(1+εi,k)= 1+δi with |δi| ≤ mεmachine +O(ε2

machine).
Since m = log2(n), the desired result follows immediately.

(b) As in problem 2, our δi factor is now a sum of random εi,k values and grows as
√

m. That is, we expect
that the average error grows as log2 nO(εmachine)∑i |xi|.

(c) Just enlarge the base case. Instead of recursively dividing the problem in two until n < 2, divide the
problem in two until n < N for some N, at which point we sum the < N numbers with a simple loop as
in problem 2. A little arithmetic reveals that this produces ∼ 2n/N function calls—this is negligible
compared to the n − 1 additions required as long as N is sufficiently large (say, N = 200), and the
efficiency should be roughly that of a simple loop.

Using a simple loop has error bounds that grow as N as you showed above, but N is just a constant,
so this doesn’t change the overall logarithmic nature of the error growth with n. A more careful anal­
ysis analogous to above reveals that the worst-case error grows as [N + log2(n/N)]εmachine ∑i |xi|.
Asymptotically, this is not only log2(n)εmachine ∑i |xi| error growth, but with the same asymptotic
constant factor!

(d) Instead of “if (n < 2),” just do “if (n < 200)”. To keep everything in single precision, one should,
strictly speaking, call loopsum instead of the built-in function sum (which uses at least double preci­
sion, and probably uses extended precision).

The logarithmic error growth is actually so slow that it is practically impossible to see the errors
growing at all. In an attempt to see it more clearly, I wrote a C program to implement the same func­
tion (orders of magnitude quicker than doing recursion in Matlab), and went up to n = 109 or so. As
in problem 2, I averaged over 100 random x to reduce the variance. The results are plotted in figure 2
for two cases: N = 1 (trivial base case) and N = 200 (large base case, much faster). Asymptotically,
the error is growing extremely slowly with n, as expected, although it is hard to see even a logarithmic
growth; it looks pretty flat. There are also a few surprises.

First, we see that the errors are oscillating, at a constant rate on a semilog scale. In fact, the period of
the oscillations corresponds to powers of two—the error decreases as a power of two is approached,
and then jumps up again when n exceeds a power of 2. Intuitively, what is happening is this: the
reason for the slow error growth is that we are recursively dividing x into equal-sized chunks, and
are therefore adding quantities with nearly equal magnitudes on average (which minimized roundoff
error), but when n is not a power of two some of the chunks are unequal in size and the error increases.

3

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−7

input length n

m
ea

n
er

ro
r

/ s
um

 |x
i|

n = 1 base case
n = 200 base case

Figure 2: Error | f̃ (x) − f (x)|/∑i |xi| for random xi ∈ [0,1)n, averaged over 100 x vectors, for f̃ computed in
single precision by recursively dividing the sum in two halves until n < N, at which point a simple loop is
employed. Results for N = 1 and N = 200 base cases are shown.

Second, for the N = 200 base case, the errors initially increase much faster—as
√

n, in fact, and
then come back down for n � N. Obviously, for n < N the errors must increase as

√
n as in prob­

lem 2, since for this case we do no recursion and just sum via a loop. However, when n � N, the
logarithmic terms in the error dominate over the O(N) term, and the error approaches the error for
N = 1 with the same constant factor, as predicted above!

However, predicting the exact functional dependence is clearly quite difficult!

(e) An m × m matrix multiplication is just a bunch of length-m dot products. The only error accumulation
in a dot product will occur in the summation, so the error growth with m should be basically the same
as in our analysis of the corresponding summation algorithm.

If you use the simple 3-loop row-column algorithm, you are doing the summation(s) via simple loops,
and the errors should thus grow as O(εmachine

√
m) on average as above. The cache-oblivious algo­

rithm, on the other hand, corresponds to recursively dividing each dot product in two, and hence the
errors should grow as O(εmachine

√
logm) as above.

In most cases, however, m isn’t large enough for people to care about this difference in accuracy
for matrix multiplies.

Problem 4: Stability

(a) Trefethen, exercise 15.1.	 In the following, I abbreviate εmachine = εm, and I use the fact (from
problem 1) that we can replace any g(O(ε)) with g(0) + g�(0)O(ε). I also assume that fl(x) is

4

�����
�����

� �

deterministic—by a stretch of Trefethen’s definitions, it could conceivably be nondeterministic in
which case one of the answers changes as noted below, but this seems crazy to me (and doesn’t corre­
spond to any real machine).

(i) Backward stable.	 x ⊕ x = fl(x) ⊕ fl(x) = [x(1 + ε1)+ x(1 + ε1)](1 + ε2) = 2x̃ for |εi| ≤ εm and
x̃ = x(1 + ε1 + ε2 + 2ε1ε2) = x[1 + O(εm)].

(ii) Backward stable.	 x ⊗ x = fl(x) ⊗ fl(x) = [x(1 + ε1) × x(1 + ε1)](1 + ε2) = x̃2 for |εi| ≤ εm and
x̃ = x(1 + ε1)

√
1 + ε2 = x[1 + O(εm)].

(iii) Stable but not backwards stable. x � x = [fl(x)/fl(x)](1 + ε) = 1 + ε (not including x = 0 or ∞,
which give NaN). This is actually forwards stable, but there is no x̃ such that x̃/x̃ =� 1 so it is not
backwards stable. (Under the stronger assumption of correctly rounded arithmetic, this will give
exactly 1, however.)

(iv) Backwards stable. x � x = [fl(x) − fl(x)](1 + ε) = 0. This is the correct answer for x̃ = x. (In the
crazy case where fl is not deterministic, then it might give a nonzero answer, in which case it is
unstable.)

(v) Unstable. It is definitely not backwards stable, because there is no data (and hence no way to
choose x̃ to match the output). To be stable, it would have to be forwards stable, but it isn’t
because the errors decrease more slowly than O(εm). More explicitly, 1 ⊕ 12 ⊕ 16 ⊕·· · summed
from left to right will give ((1 + 1)(1 + ε1) + 1)(1 + ε2) = e + 3

ε1 + 10
ε2 + dropping2 6	 2 6· · ·	 · · ·

terms of O(ε2), where the coefficients of the εk factors converge to e. The number of terms is n
where n satisfies n! ≈ 1/εm, which is a function that grows very slowly with 1/εm, and hence the
error from the additions alone is bounded above by ≈ nεm. The key point is that the errors grow
at least as fast as nεm (not even counting errors from truncation of the series, approximation of
1/k!, etcetera), which is not O(εm) because n grows slowly with decreasing εm.

(vi) Stable. As in (e), it is not backwards stable, so the only thing is to check forwards stability.
Again, there will be n terms in the series, where n is a slowly growing function of 1/εm (n! ≈
1/εm). However, the summation errors no longer grow as n. From right to left, we are summing

n
1
! ⊕ (n−

1
1)! ⊕·· ·⊕1. But this gives ((n

1
! + (n−

1
1)!)(1+εn−1)+ (n−

1
2)!)(1+εn−2) · · · ,and the linear

terms in the εk are then bounded by

1
j!
≤ εm

1n−

∑
k=1 j=k

1n−

∑
k=1 j=k

+
1n−

∑
j=1

j
j!

n n 1
= εm

n − 1
n!∑
 ∑
εk ≈ εme = O(εm).

j!

The key point is that the coefficients of the εk coefficients grow smaller and smaller with k, rather
than approaching e as for left-to-right summation, and the sum of the coefficients converges. The
truncation error is of O(εm), and we assume 1/k! can also be calculated to within O(εm), e.g. via
Stirling’s approximation for large k, so the overall error is O(εm) and the algorithm is forwards
stable.

(vii) Unstable. Not backwards stable since no data, but what about forwards stability? The problem
is the squaring of the sine function. Suppose x = π − δ and x� = x(1 + εm) for some small δ > 0.
Then sin(x) sin(x�) ≈ δ (δ − εmπ) + O(δ 2). In exact arithmetic, this goes to zero for δ = 0,
i.e. x = π . However, it goes to zero too rapidly: if δ = O(

√
εm),then sin(x) sin(x�) = O(εm),

and an O(εm) floating-point error in computing sin will cause the product to pass through zero.
Therefore, this procedure only finds π to O(

√
εm), which is too slow to be considered stable.

(b) Trefethen, exercise 16.1. Since stability under all norms is equivalent, we are free to choose � ·� to be
the L2 norm (and the corresponding induced norm for matrices), for convenience, since that norm is
preserved by unitary matrices.

5

(�

�

(i) First, we need to show that multiplication of A by a single unitary matrix Q is backwards sta­
ble. That is, we need to find a δ A with �δ A� = �A�O(εmachine) such that �QA = Q(A + δ A).
Since �Qδ A� = �δ A�, however, this is equivalent to showing � �QA − QA� = �A�O(εmachine).
It is sufficient to look at the error in the i j-th element of QA, i.e. the error in computing
∑k qikak j. Assuming we do this sum by a straightforward loop, the analysis is exactly the
same as in problem 2, except that there is an additional (1 + ε) factor in each term for the
error in the product qikak j [or (1 + 2ε) if we include the rounding of qik to q̃ik = fl(qik)]. Hence,
the error in the i j-th element is bounded by mO(εmachine) ∑k |qikak j|, and (using the unitarity
of Q, which implies that |qik| ≤ 1, and the equivalence of norms) this in turn is bounded by
mO(εmachine) ∑k |ak j| ≤ mO(εmachine)∑k j |ak j| ≤ mO(εmachine)�A�. Summing m2 of these
errors in the individual elements of QA, again using norm equivalence, we obtain � �QA − QA� ≤
O(1)∑i j | QA − QA)i j| ≤ m3O(εmachine)�A�. Thus, we have proved backwards stability for
multiplying by one unitary matrix (with a very pessimistic m3 coefficient, but that doesn’t matter
here).

Now, we will show by induction that multiplying by k unitary matrices is backwards stable.
Suppose we have proved it for k, and want to prove for k + 1. That is, consider QQ1 · · ·QkA.
By assumption, Q1 · · ·QkA is backwards stable, and hence B = Q1� · · ·QkA = Q1 · · ·Qk(A + δ Ak)
for some �δ Ak� = O(εmachine)�A�. Also, from above, �QB = Q(B + δ B) for some �δ B� =
O(εmachine)�B�. Furthermore, �B� = �Q1 · · ·Qk(A + δ Ak)� = �A + δ Ak� ≤ �A� + �δ Ak� =

�A�[1+O(εmachine)]. Hence, QkA = � Qk(A+δ Ak)+δ B] Qk(A+QQ�1 · · · QB = Q[Q1 · · · = QQ1 · · ·
δ A) where δ A = δ Ak +[Q1 · · ·Qk]−1δ B and �δ A�≤ �δ Ak�+�δ B� = O(εmachine)�A�. Q.E.D.

(ii) Consider XA, where X is some rank-1 matrix xy∗ and A has rank > 1. The product XA has rank 1
in exact arithmetic, but after floating-point errors it is unlikely that �XA will be exactly rank 1.
Hence it is not backwards stable, because XÃ will be rank 1 regardless of Ã, and thus is =� XA.
(See also example 15.2 in the text.)

6

MIT OpenCourseWare
http://ocw.mit.edu

18.335J / 6.337J Introduction to Numerical Methods

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

