
18.335 Problem Set 3 Solutions 

Problem 1: SVD and low-rank approximations (5+10+10+10 pts) 

(a)	 A = Q̂R̂, where the columns of Q̂ are orthonormal and hence Q̂∗Q̂ = I. Therefore, A∗A = ( Q̂R̂)∗(Q̂R̂) = 
R̂∗(Q̂∗Q̂)R̂ = R̂∗R̂. But the singular values of A and R̂ are the square roots of the nonzero eigenvalues 
of A∗A and R̂∗R̂, respectively, and since these two matrices are the same the singular values are the 
same. Q.E.D. 

(b) It is sufficient to show that the reduced SVD AV̂ = Û Σ̂ is real, since the remaining columns of U and 
V are formed as a basis for the orthogonal complement of the columns of Û and V̂ , and if the latter 
are real then their complement is obviously also real. Furthermore, it is sufficient to show that Û can 
be chosen real, since A∗ui/σi = vi for each column ui of Û and vi of Û , and A∗ is real. The columns 
ui are eigenvectors of A∗A = B, which is a real-symmetric matrix, i.e. Bui = σi 

2ui. Suppose that the 
ui are not real. Then the real and imaginary parts of ui are themselves eigenvectors with eigenvalue 
σi 

2 (proof: take the real and imaginary parts of Bui = σi 
2ui, since B and σi 

2 are real). Hence, taking 
either the real or imaginary parts of the complex ui (whichever is nonzero) and normalizing them to 
unit length, we obtain a new purely real Û . Q.E.D.1 

(c) We just need to show that, for any A ∈ Cm×n with rank < n and for any ε > 0, we can find a full-rank 
matrix B with �A − B�2 < ε . Form the SVD A = UΣV ∗ with singular values σ1, . . . ,σr where r < n 
is the rank of A. Let B = U Σ̃V ∗ where Σ̃ is the same as Σ except that it has n − r additional nonzero 
singular values σk>r = ε/2. From equation 5.4 in the book, �B − A�2 = σr+1 = ε/2 < ε , noting that 
A = Br in the notation of the book. 

(d) Take any grayscale photograph (either one of your own, or off the web). Scale it down to be no more 
than 1500 × 1500 (but not necessarily square), and read it into Matlab as a matrix A with the imread 
command (type “doc imread” for instructions). 

(i) This is plotted on a semilog scale in Fig 1, showing that the singular values σi decrease faster 
than exponentially with i. 

(ii) Figure 2 shows an image of a handsome fellow, both at full resolution (200 singular values), and 
using only 16 and 8 singular values. Even with just 8 singular values (4% of the data), the image 
is still at least somewhat recognizable. If the image were larger (this one is only 282 × 200) then 
it would probably compress even more. 

Problem 2: QR and orthogonal bases (10+10+(5+5+5) pts) 

(a) If A = QR, then B = RQ = Q∗AQ = Q−1AQ is a similarity transformation, and hence has the same 
eigenvalues as shown in the book. Numerically (and as explained in class and in lecture 28), doing 
this repeatedly for a Hermitian A (the unshifted QR algorithm) converges to a diagonal matrix Λ 
of the eigenvalues in descending order. To get the eigenvectors, we observe that if the Q matrices 
from each step are Q1, Q2, and so on, then we are computing Q∗ 

2Q∗ = Λ, or A = QΛQ∗ · · · 1AQ1Q2 · · · 
where Q = Q1Q2 · · · . By comparison to the formula for diagonalizing A, the columns of Q are the 
eigenvectors. 

(b) The easiest way to approach this problem is probably to look at the explicit construction of R̂ via the 
Gram-Schmidt algorithms. By inspection, ri j = q∗i v j is zero if i is even and j is odd or vice-versa. 

1There is a slight wrinkle if there are repeated eigenvalues, e.g. σ1 = σ2, because the real or imaginary parts of u1 and u2 might not 
be orthogonal. However, taken together, the real and imaginary parts of any multiple eigenvalues must span the same space, and hence 
we can find a real orthonormal basis with Gram-Schmidt or whatever. 
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Figure 1: Distribution of the singular values σi in the image of Fig. 2, showing that they decrease faster than 
exponetially with i. 

Figure 2: Left: full resolution image (albeit JPEG-compressed). Middle: 16% of the singular values. Right: 
4% of the singular values. 
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Because of this, R̂ will have a checkerboard pattern of nonzero values: ⎞⎛ 

R̂ = 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

× × × × 
× × × × 

× × × 
× × × 

× × 
× × 

× 
× 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

. 

(c) Trefethen, problem 10.4: 

(i) e.g. consider θ = π/2 (c = 0, s = 1): Je1 = −e2 and Je2 = e1, while Fe1 = e2 and Fe2 = e1. 
J rotates clockwise in the plane by θ . F is easier to interpret if we write it as J multiplied 
on the right by [−1,0;0, 1]: i.e., F corresponds to a mirror reflection through the y (e2) axis 
followed by clockwise rotation by θ . More subtly, F corresponds to reflection through a mirror 
plane corresponding to the y axis rotated clockwise by θ /2. That is, let c2 = cos(θ /2) and 
s2 = cos(θ/2), in which case (recalling the identities c2

2 − s2
2 = c, 2s2c2 = s): � 

c− 2c2 s2 −1 0 c2 −s2 s2 c2 s−s2 = 
−c 

= F,= −s2 c2 0 1 s2 c2 s2 c2 s2 c2 s c 

which shows that F is reflection through the y axis rotated by θ /2. 

(ii) The key thing is to focus on how we perform elimination under a single column of A, which we 
then repeat for each column. For Householder, this is done by a single Householder rotation. 
Here, since we are using 2 × 2 rotations, we have to eliminate under a column one number at a 

time: given 2-component vector x = 
a
b 

into Jx = 
�x

0
�2 , where J is clockwise rotation 

by θ = tan−1(b/a) [or, on a computer, atan2(b,a)]. Then we just do this working “bottom-up” 
from the column: rotate the bottom two rows to introduce one zero, then the next two rows to 
introduce a second zero, etc. 

(iii) The flops to compute the J matrix itself are asymptotically irrelevant, because once J is computed 
it is applied to many columns (all columns from the current one to the right). To multiply J by a 
single 2-component vector requires 4 multiplications and 2 additions, or 6 flops. That is, 6 flops 
per row per column of the matrix. In contrast, Householder requires each column x to be rotated 
via x = x − 2v(v∗x). If x has m components, v∗x requires m multiplications and m − 1 additions, 
multiplication by 2v requires m more multiplications, and then subtraction from x requires m 
more additions, for 4m − 1 flops overall. That is, asymptotically 4 flops per row per column. The 
6 flops of Givens is 50% more than the 4 of Householder. 

Problem 3: Schur fine (10 + 15 points) 
(a) First, let us show that T is normal: substituting A = QT Q∗ into AA∗ = A∗A yields QT Q∗QT ∗Q∗ = 

QT ∗Q∗QT Q∗ and hence (cancelling the Qs) T T ∗ = T ∗T . 

The (1,1) entry of T ∗T is the squared L2 norm (� · �2
2) of the first column of T , i.e. |t1,1|2 since 

T is upper triangular, and the (1,1) entry of T T ∗ is the squared L2 norm of the first row of T , i.e. 
∑i |t1,i|2. For these to be equal, we must obviously have t1,i = 0 for i > 1, i.e. that the first row is 
diagonal. 
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We proceed by induction. Suppose that the first j − 1 rows of T are diagonal, and we want to prove 
this of row j. The ( j, j) entry of T ∗T is the squared norm of the j-th column, i.e. ∑i≤ j |ti, j|2, but this 
is just |t j, j|2 since ti, j = 

2 
0 for i < j by induction. The ( j, j) entry of T T ∗ is the squared norm of the 

j-th row, i.e. ∑i≥ j |t j,i| . For this to equal |t j, j|2, we must have t j,i = 0 for i > j, and hence the j-th 
row is diagonal. Q.E.D. 

(b) The eigenvalues are the roots of det(T − λ I) = ∏i(ti,i − λ ) = 0—since T is upper-triangular, the roots 
are obviously therefore λ = ti,i for i = 1, . . . ,m. To get the eigenvector for a given λ = ti,i, it suffices 
to compute the eigenvector x of T , since the corresponding eigenvector of A is Qx. 

x satisfies ⎛ ⎞⎛ ⎞

T1 u B x1


0 = (T − ti,iI)x = ⎝ 0 v∗ ⎠⎝ α ⎠ ,

T2 x2


where we have broken up T −ti,iI into the first i−1 rows (T1 uB), the i-th row (which has a zero on the 
diagonal), and the last m − i rows T2; similarly, we have broken up x into the first i − 1 rows x1, the i-th 
row α , and the last m − i rows x2. Here, T1 ∈ C(i−1)×(i−1) and T2 ∈ C(m−i)×(m−i) are upper-triangular, 
and are non-singular because by assumption there are no repeated eigenvalues and hence no other t j, j 

equals ti,i. u ∈ Ci−1, v ∈ Cm−i, and B ∈ C(i−1)×(m−i) come from the upper triangle of T and can be 
anything. Taking the last m − i rows of the above equation, we have T2x2 = 0, and hence x2 = 0 since 
T2 is invertible. Furthermore, we can scale x arbitrarily, so we set α = 1. The first i − 1 rows then give 
us the equation T1x1 + u = 0, which leads to an upper-triangular system T1x1 = −u that we can solve 
for x1. 

Now, let us count the number of operations. For the i-th eigenvalue ti,i, to solve for x1 requires 
∼ (i − 1)2 ∼ i2 flops to do backsubstitution on an (i − 1)×(i− 1) system T1x1 = −u. Then to compute 
the eigenvector Qx of A (exploiting the m − i zeros in x) requires ∼ 2mi flops. Adding these up for 
i = 1 . . .m, we obtain ∑m

i=1 i
2 ∼ m3/3, and 2m∑

m
i=
−
0
1 i ∼ m3, and hence the overall cost is ∼ 3

4 m3 flops 
(K = 4/3). 
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