18.335 Problem Set 3 Solutions

Problem 1: SVD and low-rank approximations (5+10+10+10 pts)

(a) A=QR, where the columns of Q are orthonormal and hence O*Q = I. Therefore, A*A = (OR)*(QOR) =
R*(0*O)R = R*R. But the singular values of A and R are the square roots of the nonzero eigenvalues
of A*A and R*R, respectively, and since these two matrices are the same the singular values are the
same. Q.E.D.

(b) It is sufficient to show that the reduced SVD AV =0%is real, since the remaining columns of U and
V are formed as a basis for the orthogonal complement of the columns of U and V, and if the latter
are real then their complement is obviously also real. Furthermore, it is sufficient to show that U can
be chosen real, since A*u;/o; = v; for each column u; of U and v; of U, and A* is real. The columns
u; are eigenvectors of A*A = B, which is a real-symmetric matrix, i.e. Bu; = 6?u;. Suppose that the
u; are not real. Then the real and imaginary parts of u; are themselves eigenvectors with eigenvalue
6,-2 (proof: take the real and imaginary parts of Bu; = G,-zui, since B and 6,-2 are real). Hence, taking
either the real or imaginary parts of the complex u; (whichever is nonzero) and normalizing them to
unit length, we obtain a new purely real U. Q.E.D.!

(c) We just need to show that, for any A € C"™*" with rank < n and for any € > 0, we can find a full-rank
matrix B with ||A — B||2 < €. Form the SVD A = UXV* with singular values oy,...,0, where r <n
is the rank of A. Let B = ULV* where £ is the same as X except that it has n — r additional nonzero
singular values Oy~, = €/2. From equation 5.4 in the book, ||B—Al|2 = 6,11 = €/2 < &, noting that
A = B, in the notation of the book.

(d) Take any grayscale photograph (either one of your own, or off the web). Scale it down to be no more
than 1500 x 1500 (but not necessarily square), and read it into Matlab as a matrix A with the imread
command (type “doc imread” for instructions).

(i) This is plotted on a semilog scale in Fig 1, showing that the singular values o; decrease faster
than exponentially with i.

(i1) Figure 2 shows an image of a handsome fellow, both at full resolution (200 singular values), and
using only 16 and 8 singular values. Even with just 8 singular values (4% of the data), the image
is still at least somewhat recognizable. If the image were larger (this one is only 282 x 200) then
it would probably compress even more.

Problem 2: QR and orthogonal bases (10+10+(5+5+5) pts)

(a) If A = QR, then B = RQ = Q*AQ = Q~'AQ is a similarity transformation, and hence has the same
eigenvalues as shown in the book. Numerically (and as explained in class and in lecture 28), doing
this repeatedly for a Hermitian A (the unshifted QR algorithm) converges to a diagonal matrix A
of the eigenvalues in descending order. To get the eigenvectors, we observe that if the Q matrices
from each step are Q1, 0>, and so on, then we are computing - -- Q;0Q7AQ10>--- = A, or A = QAQ*
where O = 010, ---. By comparison to the formula for diagonalizing A, the columns of Q are the
eigenvectors.

(b) The easiest way to approach this problem is probably to look at the explicit construction of R via the
Gram-Schmidt algorithms. By inspection, r;; = ¢jv; is zero if i is even and j is odd or vice-versa.

I'There is a slight wrinkle if there are repeated eigenvalues, e.g. G| = 03, because the real or imaginary parts of u; and u, might not
be orthogonal. However, taken together, the real and imaginary parts of any multiple eigenvalues must span the same space, and hence
we can find a real orthonormal basis with Gram-Schmidt or whatever.
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Figure 1: Distribution of the singular values o; in the image of Fig. 2, showing that they decrease faster than
exponetially with 7.

Figure 2: Left: full resolution image (albeit JPEG-compressed). Middle: 16% of the singular values. Right:
4% of the singular values.



Because of this, R will have a checkerboard pattern of nonzero values:
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(c) Trefethen, problem 10.4:
(i) e.g. consider 8 = 7/2 (¢ =0, s =1): Je; = —ep and Jep, = e, while Fe; = e; and Fey = e;.

J rotates clockwise in the plane by 0. F is easier to interpret if we write it as J multiplied
on the right by [—1,0;0,1]: i.e., F corresponds to a mirror reflection through the y (e;) axis
followed by clockwise rotation by 6. More subtly, F' corresponds to reflection through a mirror
plane corresponding to the y axis rotated clockwise by 6/2. That is, let ¢; = cos(0/2) and
52 = cos(6/2), in which case (recalling the identities ¢5 — 53 = ¢, 2s2¢2 = 5):

5 -1 0 c —5 —Ccy 5 ) —5 —c s
= = = F,
-5 0 1 s2 ) s2 C2 s € s C

which shows that F is reflection through the y axis rotated by 6/2.

(ii) The key thing is to focus on how we perform elimination under a single column of A, which we
then repeat for each column. For Householder, this is done by a single Householder rotation.
Here, since we are using 2 x 2 rotations, we have to eliminate under a column one number at a

[1x[l2

0
by 6 = tan~!(b/a) [or, on a computer, atan2(b,a)]. Then we just do this working “bottom-up”
from the column: rotate the bottom two rows to introduce one zero, then the next two rows to
introduce a second zero, etc.

. . a ‘. . . .
time: given 2-component vector x = ( b ) into Jx = ( ) , where J is clockwise rotation

(iii) The flops to compute the J matrix itself are asymptotically irrelevant, because once J is computed
it is applied to many columns (all columns from the current one to the right). To multiply J by a
single 2-component vector requires 4 multiplications and 2 additions, or 6 flops. That is, 6 flops
per row per column of the matrix. In contrast, Householder requires each column x to be rotated
via x = x —2v(v*x). If x has m components, v*x requires m multiplications and m — 1 additions,
multiplication by 2v requires m more multiplications, and then subtraction from x requires m
more additions, for 4m — 1 flops overall. That is, asymptotically 4 flops per row per column. The
6 flops of Givens is 50% more than the 4 of Householder.

Problem 3: Schur fine (10 + 15 points)

(a) First, let us show that 7' is normal: substituting A = QT Q* into AA™ = A*A yields QT Q*QT*Q" =
QT*Q*QT Q" and hence (cancelling the Qs) TT* =T*T.

The (1,1) entry of T*T is the squared L, norm (|| - ||3) of the first column of T, i.e. |t |* since
T is upper triangular, and the (1,1) entry of 77" is the squared L, norm of the first row of T, i.e.
Y |t1,,'|2. For these to be equal, we must obviously have #;; = 0 for i > 1, i.e. that the first row is
diagonal.



(b)

We proceed by induction. Suppose that the first j — 1 rows of T are diagonal, and we want to prove
this of row j. The (j, j) entry of T*T is the squared norm of the j-th column, i.e. ¥;<; |t:.j|2, but this
is just |t j|? since #; ; = 0 for i < j by induction. The (j, j) entry of TT* is the squared norm of the
j-th row, i.e. ¥ ;t;i|* For this to equal |t ;|*, we must have #;; = 0 for i > j, and hence the j-th
row is diagonal. Q.E.D.

The eigenvalues are the roots of det(T — A1) =[];(#;; —A) = O—since T is upper-triangular, the roots
are obviously therefore A = ti;fori=1,...,m. To get the eigenvector for a given A= 1; i, it suffices
to compute the eigenvector x of 7', since the corresponding eigenvector of A is QOx.

X satisfies
T] u B X1
0= (T—l‘i’il)xz 0 v o ,
Tz X2

where we have broken up T —#;;/ into the first i — 1 rows (7 u B), the i-th row (which has a zero on the
diagonal), and the last m — i rows T»; similarly, we have broken up x into the first i — 1 rows x1, the i-th
row @, and the last m — i rows x;. Here, T € CU=D>(=1) and 15 € Cm=)* (=) are upper-triangular,
and are non-singular because by assumption there are no repeated eigenvalues and hence no other #;
equals #;;. u€ C~!, v e C" i and B € Cli=Dx(m=) come from the upper triangle of 7' and can be
anything. Taking the last m — i rows of the above equation, we have T>x, = 0, and hence x, = 0 since
T; is invertible. Furthermore, we can scale x arbitrarily, so we set & = 1. The first i — 1 rows then give
us the equation 77x; + u = 0, which leads to an upper-triangular system 77x; = —u that we can solve
for x;.

Now, let us count the number of operations. For the i-th eigenvalue #;;, to solve for x; requires
~ (i—1)? ~ i? flops to do backsubstitution on an (i — 1) x (i — 1) system Tyx; = —u. Then to compute
the eigenvector Qx of A (exploiting the m — i zeros in x) requires ~ 2mi flops. Adding these up for
i=1...m, we obtain };* | 2~ m3/3, and ZmZ;.”;Ol i ~ m3, and hence the overall cost is ~ %m3 flops
(K=4/3).
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