
18.335 Problem Set 4 Solutions 

Problem 1: Hessenberg ahead! (10+10+10 points) 
(a) (Essentially the same recurrence is explained in equation 30.8 in the text.) You can derive this re­

currence relation by recalling the expression for determinants in terms of cofactors or minors that 
you should have learned in a previous linear-algebra course. In detB, the coefficient the (i, j) en­
try Bi j is (−1)i+ j multiplied by the determinant of the submatrix (minor) of B with the i-th row 
and j-th column removed (this determinant, mutiplied by (−1)i+ j, is the cofactor of Bi j). The co­
factor formula tells us that the determinant is equal to any row (or column) of B multiplied by its 
cofactors. Take the last row of B, which has only two nonzero entries Bmm and Bm,m−1. The co­
factor of Bmm is +detB1:m−1,1:m−1. The cofactor of Bm,m−1 is the −1 times the determinant of 
the matrix whose last column is all zeros except for Bm−1,min the lower-right. To get the determi­
nant of that matrix we take everything in that column and multiply by their cofactors; everythign 
is zero except for Bm−1,m, whose cofactor is +det B1:m−2,1:m−2. Putting these together, we have 
detB = Bm,m detB1:m−1,1:m−1 − Bm−1,mBm,m−1 det B1:m−2,1:m−2 as desired. 

This gives a three-term recurrence relation, since the determinant of each submatrix is given in terms 
of the the determinants of the two smaller submatrices. At each iteration, we only need the determi­
nants of the submatrices of size n × n and (n − 1) × (n − 1) to get the determinant of the submatrix 
of size (n + 1) × (n + 1) using three multiplications and one addition, or four flops. We have to apply 
the recurrence m − 1 times to get the full det(H − zI), for 4(m − 1)+ m = O(m) flops (where the +m 
flops was for subtracting z from the m diagonals). The code is given in part (b) below (including the 
derivative. 

To test it, we computed a random H matrix as suggested in the problem, for m = 20, and computed the 
relative error (evalpoly(H,z)-det(H-z*eye(m)))/det(H-z*eye(m)) for a few randomly cho­
sen values of z. The relative error was always on the order of the machine precision ≈ 10−16. 

(b) If we simply take the derivative d 
dz of our recurrence relation for det B, we get a three-term recurrence 

relation for (detB)�: 

(det B)� = −detB1:m−1,1:m−1 + Bm,m(det B1:m−1,1:m−1)� − Bm−1,mBm,m−1(det B1:m−2,1:m−2), 

using the fact that for B = H − zI we have B� = −I and hence B� = −1 while B�m−1,m = Bm,m−1 = 0.mm 
�

This is implemented in the following Matlab function: 

function [p,pderiv] = evalpoly(H,z)

m = size(H,1);

d1 = (H(1,1) - z);

d2 = 1;

d1deriv = -1;

d2deriv = 0;

for i = 2:m


d = (H(i,i) - z) * d1 - H(i-1,i)*H(i,i-1) * d2;

dderiv = -d1 + (H(i,i) - z) * d1deriv - H(i-1,i)*H(i,i-1)* d2deriv;

d2 = d1;

d1 = d;

d2deriv = d1deriv;

d1deriv = dderiv;


end 
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p = d1;

pderiv = d1deriv;


If we choose Δz = 10−4, and compare [p(z + Δz) − p(z − Δz)]/2Δz to pderiv computed by this 
function for a random H (as above) and for various random z ∈ [0,1], then the relative difference 
is usually on the order of 10−6 or so. Decreasing Δz to 10−6, the relative difference is around 
10−10 or so; exactly the convergence of O(Δz2)that one would expect: Taylor expanding p(z + Δz) = 
p(z)+ p�(z)Δz + p��(z)Δz2/2 + O(Δz3), one finds [p(z + Δz) − p(z − Δz)]/2Δz = p�(z)+ O(Δz2). Of 
course, you can’t make Δz too small or you run into the limitations of floating-point precision (e.g. 
Δz = 10−20 will just give zero for p(z + Δz) − p(z − Δz) if z ∼ 1). 

(c) Newton’s method is just the iteration z ← z − p(z)/p�(z). You can do this “by hand” in Matlab, but I 
wrote a little Matlab script to repeat this until the answer stops changing to within 10εmachine. (Better 
stopping criteria could be devised, but this works well enough for illustration purposes.) 

function lam = newtpoly(H, lamguess)

lam = lamguess;

for i = 1:1000


[p,pderiv] = evalpoly(H, lam);

disp(lamnew = lam - p / pderiv);

if (abs(lamnew - lam) < 10*eps*abs(lamnew))


break;

end

lam = lamnew;


end 

Applying this to my random A and H from above, I run eig(A) to get the eigenvalues, and then 
execute the Newton solver with starting points that are somewhere nearby one of the eigenvalues (e.g. 
the eigenvalue rounded to two significant digits). You can run the command format long to have 
Matlab print out values to 15 decimal places, to better see what is going on. A typical output is: 

>> newtpoly(H, 0.96)

0.961143436106079

0.961118817820461

0.961118806268620

0.961118806268617

0.961118806268617

ans = 0.961118806268617


In comparison, the corresponding eigenvalue returned by eig(A) is λ ≈ 0.961118806268619, which 
differs only in the 15th decimal place from the Newton result. If you repeat this with several eigen­
values (i.e., different starting points), you find that it consistently finds λ to nearly machine precision. 
Notice that the number of accurate digits roughly doubles on each step, which is typical of Newton’s 
method: this is “quadratic” convergence. 

If you tried a test case with a bigger value of m, say m = 1000, you problably noticed a problem: the 
determinant grows so large that it overflows the range of floating-point arithmetic, leading to results of 
NaN or Inf! However, this is easily fixed. For example, as one is computing the determinant, one can 
periodically check the magnitude and rescale to prevent it from growing too large (or too small)—obviously, 
p(z) multiplied by any constant still has the same roots. There are also slightly more clever recurrences 
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that rescale the result automatically; See Barth, Martin, and Wilkinson (1967).1 The other key to finding 
eigenvalues in this way, described in lecture 30 of Trefethen, is that there is a simple technique to count 
the number of eigenvalues in any given interval, leading to the “bisection” algorithm I mentioned in class. 
I didn’t expect you to do any of that stuff however; I hope you all just picked a small enough m to avoid 
overflow. 

Problem 2: Q’s ‘R us (10+15 points) 

(a) In finite precision, instead of w = A−1v, we will get w̃ = w+δ w where δ w = −(A+δ A)−1δ Aw (from 
the formula on page 95), where δ A = O(εmachine)�A� is the backwards error. [Note that we cannot 
use δ w ≈ −A−1δ Aw, which neglects the δ Aδ w terms, because in this case δ w is not small.] The 
key point, however, is to show that δ w is mostly parallel to q1, the eigenvector corresponding to the 
smallest-magnitude eigenvalue λ1 (it is given that all other eigenvalues have magnitude ≥ |λ2|� |λ1|). 
Since w is also mostly parallel to q1, this will mean that w̃/�w̃�2 ≈ q1 ≈ w/�w�2. 

First, exactly as in our analysis of the power method, note that w = A−1v = α1q1[1 + O(λ1/λ2)], 
since A−1 amplifies the q1 component of v by 1/ λ1| which is much bigger than the inverse of all the 
other eigenvalues. Thus, w/�w�2 = q1[1 + O(λ1/

|
λ2)]. 

Second, if we Taylor-expand (A + δ A)−1 in powers of δ A, i.e. in powers of εmachine, we obtain: 
(A + δ A)−1 = A−1 

machine ). Since all of the terms in this expansion are propor­− A−1δ AA−1 + O(ε2 

tional to A−1, when multiplied by any vector they will again amplify the q1 component much more 
than any other component. In particular, the vector δ Aw is a vector in a random direction (since δ A 
comes from roundoff and is essentially random) and hence will have some nonzero q1 component. 
Thus, δ w = −(A + δ A)−1δ Aw = β1q1[1 + O(λ1/λ2)] for some constant β1. 

Putting these things together, we see that w̃ = (α1 + β1)q1[1 + O(λ1/λ2)], and hence w̃/�w̃�2 = 
q1[1 + O(λ1/λ2)] = w [1 + O(λ1/λ2)]. Q.E.D. �w�2 

(b) Trefethen, problem 28.2: 

(i) In general, ri j is nonzero (for i < j) if column i is non-orthogonal to column j. For a tridiagonal 
matrix A, only columns within two columns of one another are non-orthogonal (overlapping in 
the nonzero entries), so R should only be nonzero (in general) for the diagonals and for two 
entries above each diagonal; i.e. ri j is nonzero only for i = j, i = j − 1, and i = j − 2. 

Each column of the Q matrix involves a linear combination of all the previous columns, by 
induction (i.e. q2uses q1, q3uses q2 and q1, q4 uses q3 and q2, q5 uses q4 and q3, and so on). 
This means that an entry (i, j) of Q is zero (in general) only if ai,1: j = 0 (i.e., that entire row 
of A is zero up to the j-th column). For the case of tridiagonal A, this means that Q will have 
upper-Hessenberg form. 

(ii)	 Note: In the problem, you are told that A is symmetric and tridiagonal. You must also assume 
that A is real, or alternatively that A is Hermitian and tridiagonal. (This is what must be meant in 
the problem, since tridiagonal matrices only arise in the QR method if the starting point is Hermi­
tian.) In contrast, if A is complex tridiagonal with AT = A, the stated result is not true (RQ is not 
in general tridiagonal, as can easily be verified using a random tridiagonal complex A in Matlab). 

It is sufficient to show that RQ is upper Hessenberg: since RQ = Q∗AQ and A is Hermitian, 

1W. Barth, R. S. Martin, and J. H. Wilkinson, “Calculation of the eigenvalues of a symmetric tridiagonal matrix by the bisection 
method,” Numer. Math. 9, 386–393 (1967). 
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then RQ is Hermitian and upper-Hessenberg implies tridiagonal. To show that RQ is upper-
Hessenberg, all we need is the fact that R is upper-triangular and Q is upper-Hessenberg. 

Consider the (i, j) entry of RQ, which is given by ∑k ri,kqk, j. ri,k = 0 if i > k since R is up­
per triangular, and qk, j = 0 if k > j + 1 since Q is upper-Hessenberg, and hence ri,kqk, j =� 0 only 
when i ≤ k ≤ j + 1, which is only true if i ≤ j + 1. Thus the (i, j) entry of RQ is zero if i > j + 1 
and thus RQ is upper-Hessenberg. 

(iii) As we saw in problem set 3 (Trefethen 10.4), the 2 × 2 Givens QR algorithm does elimina­
tion “bottom-up” on each column, introducing zeros one at a time in the current column of A. 
Obviously, if A is tridiagonal (or even just upper-Hessenberg), most of each column is already 
zero—we only need to introduce one zero into each column below the diagonal. Hence, for each 
column k we only need to do one Givens rotation of the k-th and (k + 1)-st rows. Each 2 × 2 
Givens rotation requires 6 flops (multiping a 2-component vector by a 2 × 2 matrix), and we 
need to do it for all columns starting from the k-th. However, actually we only need to do it for 3 
columns for each k, since from above the conversion from A to R only introduces one additional 
zero above each diagonal, so most of the Givens rotations in a given row are zero. That is, the 
process looks like ⎞⎛⎞⎛⎞⎛⎞⎛ 
· ·	 • • • · · · · · · ⎜⎜⎜⎜⎜⎜⎝ 

· · · 
· · · 
· · · 

⎟⎟⎟⎟⎟⎟⎠ 

→ 

⎜⎜⎜⎜⎜⎜⎝ 

0 
· · · 
· · · 

⎟⎟⎟⎟⎟⎟⎠ 

→ 

⎜⎜⎜⎜⎜⎜⎝ 

0 ⎟⎟⎟⎟⎟⎟⎠ 

→ 

⎜⎜⎜⎜⎜⎜⎝ 

0 ⎟⎟⎟⎟⎟⎟⎠ 

· · · 
0 0 
· · · ,0 

· · · · · · · · · 
· · · · · · 

where indicates the entries that change on each step. Notice that it gradually converts A to• 
R, with the two nonzero entries above each diagonal as explained above, and that each Givens 
rotation need only operate on three columns. Hence, only O(m) flops are required, compared to 
O(m3) for ordinary QR! [Getting the exact number requires more care that I won’t bother with, 
since we can no longer sweep under the rug the O(m) operations required to construct the 2 × 2 
Givens or Householder matrix, etc.] 

Problem 3 (5+5+5+5+5 pts): 
The underlying point in this problem is that Arnoldi will only stop partway if the starting vector b is in the 
span of a subset of only n of the eigenvectors. This is why multiplying by A more than n times does not 
give any new vectors, why the Ritz vectors are exact eigenvectors (spanned by Qn), and why Ax = b has a 
solution x ∈ Kn. These results are shown explicitly by algebraic manipulation below. 

(a) In this case, the qn+1 vector is multiplied by a zero row in H̃n, and we can simplify 33.13 to AQn = 
QnHn. If we consider the full Hessenberg reduction, H = Q∗AQ, it must have a “block Schur” form: 

· · · 
· · 

Hn B
H = ,0	 H � 

where H � is an (m − n) × (m − n) upper-Hessenberg matrix and B ∈ Cn×(m−n). (It is not necessarily 
the case that B = 0; this is only true if A is Hermitian.) 

(b)	 Qn is a basis for Kn, so any vector x ∈ Kn can be written as x = Qny for some y ∈ Cn. Hence, from 
above, Ax = AQny = QnHny = Qn(Hny) ∈ Kn. Q.E.D. 

(c) The (n + 1) basis vector, Anb, is equal to A(An−1b) where An−1b ∈ Kn. Hence, from above, Anb ∈ Kn 

and thus Kn+1 = Kn. By induction, K� = Kn for � ≥ n. 
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(d) If Hny = λ y, then AQny = QnHny = λ Qny, and hence λ is an eigenvalue of A with eigenvector Qny. 

(e) If A is nonsingular, then Hn is nonsingular (if it had a zero eigenvalue, A would too from above). 
Hence, noting that b is proportional to the first column of Qn, we have: x = A−1b = A−1Qne1�b� = 
A−1QnHnH−1e1�b� = A−1AQnH−1e1�b� = QnH−1e1�b� ∈ Kn. Q.E.D. n n n 
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