Lecture 14 Hessenberg/Tridiagonal Reduction MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson October 26, 2006 # **Introducing Zeros by Similarity Transformations** • Try computing the Schur factorization $A=QTQ^*$ by applying Householder reflectors from left and right that introduce zeros: $$\begin{bmatrix} \times \times \times \times \times \times \times \\ A \end{bmatrix} \xrightarrow{Q_1^*} \begin{bmatrix} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \\ \mathbf{0} \\ \mathbf{0} \mathbf{X} \mathbf{X} \mathbf{X} \\ \mathbf{0} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \\ \mathbf{0} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \\ \mathbf{0} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \mathbf{0} \mathbf{0} \\ \\ \mathbf{0} \\ \mathbf{0} \mathbf{0} \\ \mathbf{0} \mathbf{0} \\ \mathbf{0} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \mathbf{0} \\ \mathbf{0} \mathbf{0} \\ \mathbf{0} \mathbf{0$$ - The right multiplication destroys the zeros previously introduced - We already knew this would not work, because of Abel's theorem - However, the subdiagonal entries typically decrease in magnitude ### The Hessenberg Form • Instead, try computing an upper Hessenberg matrix H similar to A: - This time the zeros we introduce are not destroyed - Continue in a similar way with column 2: ### The Hessenberg Form \bullet After m-2 steps, we obtain the Hessenberg form: ullet For hermitian A, zeros are also introduced above diagonals producing a tridiagonal matrix T after m-2 steps # Householder Reduction to Hessenberg #### **Algorithm: Householder Hessenberg** for $$k = 1$$ to $m - 2$ $$x = A_{k+1:m,k}$$ $$v_k = \text{sign}(x_1) ||x||_2 e_1 + x$$ $$v_k = v_k / ||v_k||_2$$ $$A_{k+1:m,k:m} = A_{k+1:m,k:m} - 2v_k (v_k^* A_{k+1:m,k:m})$$ $$A_{1:m,k+1:m} = A_{1:m,k+1:m} - 2(A_{1:m,k+1:m} v_k) v_k^*$$ Operation count (not twice Householder QR): $$\sum_{k=1}^{m} 4(m-k)^2 + 4m(m-k) = \underbrace{4m^3/3}_{QR} + 4m^3 - 4m^3/2 = 10m^3/3$$ • For hermitian A, operation count is twice QR divided by two $=4m^3/3$ # Stability of Householder Hessenberg • The Householder Hessenberg reduction algorithm is backward stable: $$\tilde{Q}\tilde{H}\tilde{Q}^* = A + \delta A, \qquad \frac{\|\delta A\|}{\|A\|} = O(\epsilon_{\text{machine}})$$ where $ilde{Q}$ is an exactly unitary matrix based on $ilde{v}_k$ MIT OpenCourseWare http://ocw.mit.edu 18.335J / 6.337J Introduction to Numerical Methods Fall 2010 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.