Notes on Adjoint Methods for 18.336

Steven G. Johnson

October 22, 2007

1 Introduction

Given the solution x of a discretized PDE or
some other set of N equations parameterized by
M variables p (design parameters, ak.a. control
variables or decision parameters), we often wish
to compute some function g(x,p) based on the
parameters and the solution. For example, if the
PDE is a wave equation, we might want to know
the scattered power in some direction. Or, for a
mechanical simulation, we might want to know
the load-bearing capacity of the structure. Or
for a fluid, we might wish to know the flow rate
somewhere. Often, however, we want to know
more than just the value of g—we also want to
know its gradient j—g. Adjoint methods give an

efficient way to evaluate g—z, with a cost indepen-
dent of M and usually comparable to the cost of
solving for x once.

The gradient of g with respect to p is ex-
tremely useful. It gives a measure of the sensi-
tivity of our answer to the parameters p (which
may, for example, come from some experimen-
tal measurements with some associated uncer-
tainties). Or, we may want to perform an opti-
mization of g, picking the p that produce some
desired result; in this case the gradient indi-
cates a useful search direction (e.g. for nonlin-
ear conjugate-gradient optimization). For large-
scale optimization problems, the number M of
design parameters can be hundreds, thousands,
or more—this is common in shape or topology
optimization, in which p controls the placement
and shape of arbitrary blobs of different materi-
als constituting a given structure/design. Some-
times, this process is called inverse design: find-
ing the problem that yields a given solution in-
stead of the other way around. When M > 1,
the amazing efficiency of adjoint methods makes
inverse design possible.

I haven’t found any textbook description of

adjoint methods that I particularly like, which
is part of my motivation for writing up these
notes. One introduction can be found in [1], and
a more general treatment can be found in [2].
Subsequently, Gil Strang wrote a nice introduc-
tion to adjoint methods in his book [3], including
a discussion of the important topic of automatic
differentiation (for which adjoint or “reverse” dif-
ferentiation is a key idea).

2 Linear equations

Suppose that the column-vector x solves the N x
N linear equation Ax = b where we take b and
A to be reall and to depend in some way on p.
To evaluate the gradient directly, we would do

where the subscripts indicate partial derivatives
(gx 1s a row vector, xp is an N x M matrix,
etc.). Since g is a given function, g, and gx are
presumably easy to compute. On the other hand,
computing Xp is hard: evaluating it directly by
differentiating Ax = b by a parameter p; gives
xp, = A7 (by, — A,,x). That is, we would have
to solve an N x N linear equation M times, once
for every compont of p; this is impractical if M
and N are large.?

Instead, the idea of the adjoint method (or at
least, one way of expressing it®) is to add zero in

I This involves no loss of generality, since complex lin-
ear equations can always be written as real linear equa-
tions of twice the size by taking the real and imaginary
parts as separate variables.

2Since N is large (and A is probably sparse or simi-
lar), we assume that we cannot compute A1 (or the LU
decomposition of A) explicitly, and instead must use an
iterative linear solver for each new right-hand side.

3As Gil Strang has pointed out to me [3], in many
cases adjoint methods correspond merely to a differ-

a clever fashion. Since f(x,p) = Ax — b is zero
for the solution x, we can replace g by

Gg=g-X\"'f (1)

for any vector A that we want.* We will choose
A so that the pesky xp term disappears. In par-
ticular,

dg
dp

_ %

— = gp — A+ (gx — AT fx)%
o dp P P () P

(2)
From (2), it is clear that the x, term disappears
if we simply choose gx—AT f, = 0, or equivalently

(transposing):
fe X =g (3)

In particular, for f = Ax — b, fy = A and thus
X satisfies the adjoint equation®

f=0

AT =gy (4)
Thus, A is determined by a single N x N equa-
tion, and furthermore this equation should be
the same difficulty to solve as the original equa-
tion: A and AT have the same condition num-
ber, the same sparsity, and should have similar
preconditioners. Once A is found, then 44 is de-

dp
termined from (2):

dg

A(Ax —by).
i, (Ap p)

:gp_’\Tfngp_
Again, A(p) and b(p) are presumably specified
analytically and thus Ay, and by can easily be
computed (in some cases automatically, by auto-

matic program differentiators such as ADIFOR).

ent parenthesization. For example, in this case the
adjoint method merely consists of rewriting gxxp =
gx[A7 (b, — Ap,x)] = [gxA™!](bp, — Ap,x), where we
have factored out AT = gxA~! to eliminate a costly
matrix-matrix multiply in favor of two matrix-vector mul-
tiplies. The “adding zero” viewpoint seems easier to gen-
eralize to some more complicated circumstances, however,
such as differential-algebraic equations [2].

4\ is often called a “Lagrange multiplier” in the litera-
ture, but it is not used here like a Lagrange multiplier in
the usual way. The usual way to employ a Lagrange mul-
tiplier is to let x and X be free parameters, in addition
to p, when optimizing g; at the optimum, gy = 0 implies
f = 0 and so x at the end satisfies the equations, but not
x at intermediate steps. Here, A is not a free parameter,
but is determined by the adjoint equation, and x always
satisfies f = 0.

5For complex-valued x and A, instead of the transpose
AT one obtains the adjoint AT = AT* (the conjugate-
transpose).

3 Nonlinear equations

If x satisfies some general, possibly nonlinear,

equations f(x,p) = 0, the process is almost ex-

actly the same. We solve for x by whatever

method, then define § = g—ATf as in (1), differ-

entiate as in (2), solve for A from (3), and finally

obtain p
i (5)

£=0

The only difference is that the adjoint equation
(3) is not simply the adjoint of the equation for
x. Still, it is a single N x N linear equation for A
that should be of comparable (or lesser) difficulty
to solving for x.

- AT,

=9p

4 Eigenproblems

As a more complicated example illustrating the
use of equations (3) and (5) from the previous
sections, let us suppose that we are solving a lin-
ear eigenproblem Ax = ax and looking at some
function g(x,«,p). For simplicity, assume that
A is real-symmetric and that « is non-degenerate
(i.e., x is the only eigenvector for «). In this case,
we now have N + 1 unknowns described by the

column vector:
~ X
X = .
o

The eigenequation f = Ax — ax only gives us
N equations and doesn’t completely determine
X, for two reasons. First, of course, there are
many possible eigenvalues, but let’s assume that
we have picked one in some fashion (e.g. the
smallest «, or the a closest to w, or the third
largest |af, or ...). Second, the eigenequation
does not determine the length |x|; let’s arbitrar-
ily pick |[x| = 1 or xTx = 1. This gives us N + 1
equations f = 0 where:

= f
f= (xTx—1
We’ll need N + 1 adjoint variables X

x(?)

The adjoint equations (3) then give:
(A - OL)A = g;{ - 2/6))(7

(7)

The first equation, at first glance, seems to be
problematic: A — « is singular, with a null space
of x. Tt’s, okay, though! First, we have to choose
B so that solutions of equation (6) ewist: the
right-hand side must be orthogonal to x so that it
is not in the null space of A—a. That is, we must
have xT(gI — 2x) = 0, and thus g = xTgl/2
(since xTx = 1), and therefore X satisfies:

—xTA = ga.

(A-a)d=(1-xx")gy =Pg (8)
where P = 1 — xx” is the projection operator
into the space orthogonal to x. This equation
then has a solution, and in fact it has infinitely
many solutions: we can add any multiple of x to
A and still have a solution. Equivalently, we can
write A = Ao + x for xTAg = 0 and some 7.
Fortunately, v is determined by (7): v = —¢a.
Finally, with Ay determined by (8),% we can find
the desired gradient via (5):

49 = gp—)\TApX = gp—)\oTApx+gaXTApx.
dp ¢

(9)
If we compare with g—g = gp + 9xXp + gaOp,
we immediately see that ap = x? A,x. This is
a well-known result from quantum physics and
perturbation theory, where it is known as the
Hellman-Feynman theorem.

5 Example inverse design

As a more concrete example of an inverse-design
problem, let’s consider the Schrodinger eigen-
equation in one dimension,

[;i+v@4M@EM@

with periodic boundaries ¢(x + 2) = ¢ (z). Nor-
mally, we take a given V(z) and solve for ¢ and
E. Now, however, we will specify a particular
Yo(x) and find the V(x) that gives ¢ (z) = ()
for the ground-state eigenfunction (i.e. for the

6Since P commutes with A — «, we can solve for \g
easily by an iterative method such as conjugate gradi-
ent: if we start with an initial guess orthogonal to x, all
subsequent iterates will also be orthogonal to x and will
thus converge to Ao (except for roundoff, which can be
corrected by multiplying the final result by P).

-0.15
-1

Figure 1: Optimized V(z) (scaled by 1/1000)
and v (z) for 1g(x) = 1+sin[rx +cos(3nz)| after
500 cg iterations.

smallest eigenvalue E). In particular, we will
find the V(x) that minimizes

gzﬁme—%mwm.

To solve this numerically, we will discretize the
interval x € [—1,1) with N equally-spaced points
xn = nAz (Ar = F27), and solve for the solu-
tion 1 (z,) at these points, denoted by the vec-
tor @. That is, to compare with the notation
of the previous sections, we have the eigenvector
x = 1, the eigenvalue o = FE, and the parame-
ters V(z,,) or p = V. If we discretize the eigen-
operator with the usual center-difference scheme,
we get A = Eap for:

2 -1 0 -+ 0 -1
1 2 -1 0 -
1o -1 2 -1 0 _
= A) +diag(V).
-1 2 -1
-1 0 0o -1 2

As before, we normalize v (and) to Ty =
1,7 giving a projection operator P = 1—1”T (or
P =1—1¢) (¢|, in Dirac notation). The discrete
version of ¢ is now

g, V) = (¢ — po)" (¢ — o)Az

"We also have an arbitrary choice of sign, which we
fix by choosing [¢dz > 0.

where g is to(zy), our target eigenfunction.
Therefore, gy = 2(¢ — o)T Az and thus, by
eq. (8), we find A via:

(A= E)A =2P(¢p — v)Ax, (10)

with PA =0 (A = Ag since gg = 0). gv and gp
are both 0. Moreover, Ay, is simply the matrix
with 1 at (n,n) and 0’s elsewhere, and thus from

(9):

dg
s _>\71
or equivalently —;‘g, = —A ® ¥ where © is the

pointwise product (.* in Matlab).

Whew! Now how do we solve these equations
numerically? This is illustrated by the Matlab
function schrodinger_fd_adj given below. We
set up A as a sparse matrix, then find the small-
est eigenvalue and eigenvector via the eigs func-
tion (which uses an iterative Arnoldi method).
Then we solve (10) for A via the Matlab pcg
function (preconditioned conjugate-gradient, al-
though we don’t bother with a preconditioner).
Then, given g and ;—\9,, we then just plug it
into some optimization algorithm. In particular,
nonlinear conjugate gradient seems to work well
for this problem.?

5.1 Optimization results

In this section, we give a few example results
from running the above procedure (nonlinear cg
optimization) for N = 100. As the starting guess
for our optimization, we’ll just use V(z) = 0.
That is, we are doing a local optimization in a
100-dimensional space, using the adjoint method
to get the gradient. It is somewhat remarkable
that this works—in a few seconds on a PC, it
converges to a very good solution!

We'll try a couple of example 1o (x) functions.
To start with, let’s do ¢o(x) = 1 + sin[rz +
cos(3mx)]. (Note that the ground-state 1 will
never have any nodes, so we require ¢y > 0 ev-
erywhere.) This ¢ (z), along with the resulting
¥ (x) and V(x) after 500 cg iterations, are shown
in figure 1. The solution () matches ()
very well except for a couple of small ripples,
and V(z) is quite complicated—not something
you could easily guess!

81 used the nonlinear conjugate-gradient Matlab
conj_grad routine from:
http://www2.imm.dtu.dk/“hbn/Software/

¥y

o v
— — —V/10000

Figure 2: Optimized V(z) (scaled by 1/10000)
and (x) for ¥o(z) = 1 — |z| for |z| < 0.5, after
5000 cg iterations.

0.2

10 cg iterations
—20
— 40
— 80
— 160
320

0.16

0.141

012

0.1

W(x)

0.08

0.06 -

0.04-

0.02-

Figure 3: Optimized ¢ (z) for ¢o(z) = 1 — |z
for |z| < 0.5, after various numbers of nonlinear
conjugate-gradient iterations (from 10 to 10000).

Oh, but that ¢y was too easy! Let’s try one
with discontinuities: ¢o(x) = 1—|z| for |z] < 0.5
and 0 otherwise (which looks a bit like a “house”).
This 1o(z), along with the resulting ¢ (z) and
V(z) after 500 cg iterations, are shown in fig-
ure 2. Amazingly, it still captures 1y pretty
well, although it has a bit more trouble with
the discontinuities than with the slope discon-
tinuity. This time, we let it converge for 5000
cg iterations to give it a bit more time. Was this
really necessary? In figure 3, we plot ¥ (z) for 10,
20, 40, 80, 160, 320, and 5000 cg iterations. It
gets the rough shape pretty quickly, but the dis-
continuous features are converging fairly slowly.
(Presumably this could be improved if we found
a good preconditioner, or perhaps by a different
optimization method or objective function.)

5.2 Matlab code

The following code solves for g and

dg

v not

to mention the eigenfunction % and the corre-
sponding eigenvalue F, for a given V and .

h
h
h
h
h
%
h
h
h
h

function [g,gp,E,psi] =

Usage: [g,gp,E,psi] = schrodinger_fd_adj(x, V, psi0O)

Given a column-vector x(:) of N equally spaced x points a

V of the potential V(x) at those points, solves Schroding
[-d~2/dx~2 + V(x)] psi(x) = E psi(x)

with periodic boundaries for the lowest 'ground state" ei

wavefunction psi.

Furthermore, it computes the function g = integral |psi -
the gradient gp = dg/dV (at each point x).

schrodinger_fd_adj(x, V, psi0O)

dx = x(2) - x(1);

N = length(x);

A = spdiags([ones(N,1), -2 * ones(N,1), ones(N,1)], -1:1,
A(1,N) = 1;

A(N,1) = 1;

A=- A/ dx"2 + spdiags(V, 0, N,N);

opts.disp = 0;

[psi,E] = eigs(A, 1, ’sa’, opts);

E = E(1,1);

if sum(psi) < 0

-psi; % pick sign; note that psi’ * psi =

psi = 1 from

end

gpsi = psi - psiO;
g = gpsi’ * gpsi * dx;
gpsi = gpsi * 2xdx;

P=20(x) x - psi * (psi’ * x); % projection onto directio
[lambda,flag] = pcg(A - spdiags(Exones(N,1), 0, N,N), P(g

lambda = P(lambda);
gp = -real(conj(lambda) .* psi);

disp(g);

6 Initial-value problems

So far, we have looked at x that are determined
by “simple” algebraic equations (which may come
from a PDE, etcetera). What if, instead, we are
determining x by integrating a set of equations in
time? The simplest example of this is an initial-
value problem for a linear, time-independent, ho-
mogeneous set of ODEs:

x = Bx

whose solution after a time ¢ for x(0) = b is
formally:
x = x(t) = B'b.

This, however, is exactly a linear equation Ax =
b with A = e~ B, so we can just quote our results
from earlier! That is, suppose we are optimizing
(or evaluating the sensitivity) of some function
g(x,p) based on the solution x at time ¢. Then
we find the adjoint vector X via (4):

e BTN = gf .
Equivalently, A is the exactly the solution A(t)
after a time ¢ of its own adjoint ODE:

A= BT

with initial condition A(0) = gI. We should have
expected this by now: solving for A always in-
volves a task of similar complexity to finding x,
so if we found x by integrating an ODE then we
find A by an ODE too! Of course, we need not
solve these ODEs by matrix exponentials; we can
use Runge-Kutta, forward Euler, or (if B comes
from a PDE) whatever scheme we deem appro-
priate (e.g. Crank-Nicolson).

One important property to worry about is sta-
bility, and here we are in luck. The eigenvalues of
B and BT are complex-conjugates, and so if one
is stable (eigenvalues with absolute values < 1)
then the other is!

Finally, we can write down the gradient j—g via
equation (5):

dg T

ap =gp — A" (Apx —byp).
Now, since A = e B one might be tempted
to write Ap = —Bpt - A, but this is not true

except in the very special case where B, com-
mutes with B! Unfortunately, the general ex-
pression for differentiating a matrix exponen-
tial turns out to be more complicated: A, =

- f(f e BV Boe B qt’ and so,

t
dg _ I +/ AT (t —) Bpx(t)dt' + X by,
dp 0

This is especially unfortunate because it usually
means that we have to store x(t') at all times
0 < t' <t in order to compute the integral.
Adjoint methods are storage-intensive for time-
dependent problems!

More generally, of course, one might wish to
include time-varying A, nonlinearities, inhomo-
geneous (source) terms, etcetera, into the equa-
tions to integrate. A very general formulation of
the problem, for differential-algebraic equations
(DAEs), can be found in [2]. A similar general
principle remains, however: the adjoint variable
A is determined by integrating a similar (adjoint)
DAE, using the final value of x(t) to compute
the initial condition of A(0). In fact, the A(t)
equation is actually often interpreted as being
integrated backwards in time from ¢ to 0.

References

[1] R. M. Errico, “What is an adjoint model?,”
Bulletin Am. Meteorological Soc., vol. 78,
pp. 2577-2591, 1997.

[2] Y. Cao, S. Li, L. Petzold, and R. Serban,
“Adjoint sensitivity analysis for differential-
algebraic equations: The adjoint DAE sys-
tem and its numerical solution,” SIAM J. Sci.
Comput., vol. 24, no. 3, pp. 1076-1089, 2003.

[3] G. Strang, Computational Science and
Engineering. Wellesley, MA: Wellesley-
Cambridge Press, 2007.

MIT OpenCourseWare
http://ocw.mit.edu

18.335J / 6.337J Introduction to Numerical Methods
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

