
Adjoint methods and sensitivity analysis for
recurrence relations

Steven G. Johnson

p

October 22, 2007

� ()nx pg g , n,

xp

1 Introduction

x

In this note, we derive an adjoint method for sensitivity analysis of the solution of
recurrence relations. In particular, we suppose that we have a K-component vector x

p

that is determined by iterating a recurrence relation

xn = f(xn−1 , p, n) � fn

p

for some function f depending on the previous x,1 a vector p of P parameters, and the
step index n. The initial condition is

x0 = b(p)

for some given function b of the parameters. Furthermore, we have some function g of
x:

n

and we wish to compute the gradient dgN

of gN , for some N , with respect to the dp
parameters p.

2 The explicit gradient
The gradient of gN can be written explicitly as:

dgN
N N

� � � ���
= g + g f N + fN fN −1 + f N−1 fN−2 + · · · , (1)

dp x

p

where subscripts denote partial derivatives, and should be thought of as row vectors,
N is a 1 × K matrix, and fNvs. column vectors x and p. So, for example, g is a K × P

= g(xn , p) =
x

matrix. Equation (1) is derived simply by applying the chain rule to g
g(f(xn−1 , p), p) = g(f(f(xn−2 , p), p), p) = .· · ·

N

1Note that if xn depends on xn−� for � = 1, . . . , L, the recurrence can still be cast in terms of xn−1

alone by expanding x into a vector of length KL, in much the same way that an Lth-order ODE can be
converted into L 1st-order ODEs.

1

The natural way to evaluate eq. (1) might seem to be starting at the innermost paren­
theses and working outwards, but this is inefficient. Each parenthesized expression is
a K × P matrix that must be multiplied by fn, a K × K matrix, requiring O(K2P)
time for each multiplication assuming dense matrices. There are O(N) such multipli­

x

cations, so evaluating the whole expression in this fashion requires O(NK2P) time.
However, for dense matrices, the evaluation of gN itself requires O(NK2) time, which
means that the gradient (calculated this way) is as expensive as O(P) evaluations of

Ng .
Similarly, evaluating gradients by finite-difference approximations or similar nu­

merical tricks requires O(P) evaluations of the function being differentiated (e.g. center-
difference approximations require two function evaluations per dimension). So, direct
evaluation of the gradient by the above technique, while it may be more accurate than
numerical approximations, is not substantially more efficient. This is a problem if P is
large.

p

3 The gradient by adjoints

xx

Instead of computing the gradient explicitly (by “forward” differentiation), adjoint
methods typically allow one to compute gradients with the same cost as evaluating
the function roughly twice, regardless of the number P of parameters [1, 2, 3, 4]. A
very general technique for constructing adjoint methods involves something similar to

p

Lagrange multipliers, where one adds zero to gN in a way cleverly chosen to make

x

computing the gradient easier, and in a previous note I derived the adjoint gradient for
recurrence relations by this technique, analogous to work by Cao and Petzold on ad­
joint methods for differential-algebraic equations [2]. However, Gil Strang has pointed
out to me that in many cases adjoint methods can be derived much more simply just by
parenthesizing the gradient equation in a different way [4], and this turns out to be the
case for the recurrence problem above.

The key fact is that, in the gradient equation (1), we are evaluating lots of expres-
N (fN f N−1 (fN [fN−1fN −2), gNsions like g]), and so on. Parenthesized this way, these x x

pxxpx

expressions require O(K2P) operations each, because they involve matrix-matrix mul­
tiplications. However, we can parenthesize them a different way, so that they involve
only vector-matrix multiplications, in order to reduce the complexity to O(K2 + KP),
which is obviously a huge improvement for large K and P . In particular, parenthesize

N fN)fN−1 fN)fN−1]fN−2them as (g , [(gN

x

, and so on, involving repeated multipli-
N) by a matrix fn

x x

cation of a row vector on the left (starting with g on the right. This x

repeated multiplication defines an adjoint recurrence relation for a K-component col­
umn vector λn, recurring backwards from n = N to n = 0:

)T
xλn−1 = (fn

where T is the transpose, with “initial” condition � �T

λn ,

λN N= g .x

2

�

� �

� �

In terms of this adjoint vector (so-called because of the transposes in the expressions
above), the gradient becomes:

dgN
N

N

(λn)T f n
� �T
λ0 bp. (2)+ += gp

n=1

N

pdp

Consider the computational cost to evaluate the gradient in this way. Evaluating g
and the xn costs O(NK2) time, assuming dense matrices, and evaluating λn also
takes O(NK2) time. Finally evaluating equation (2) takes O(NKP) time in the worst

fcase, dominated by the time to evaluate the summation assuming n
p

2 2() ()So, the total is , much better than for large and+O NK NKP O NK P K P .
is a dense matrix.

fIn practice, the situation is likely to be even better than this, because often n
p

be a sparse matrix: each component of will appear only for certain components of p x
()and or for certain steps . In this case the cost will be greatly reduced, e.g. O NKP n

() () or similar. Then the cost of the gradient will be dominated by to O NK O KP or
2()the two recurrences—i.e., as is characteristic of adjoint methods, the cost of O NK

finding the gradient will be comparable to the cost of finding the function value twice.
Note that there is, however, at least one drawback of the adjoint method (2) in

comparison to the direct method (1): the adjoint method may require more storage. For
()the direct method, storage is required for the current (which can be discarded nO K x

once xn+1 is computed) and O(PK) storage is required for the K × P matrix being
accumulated, to be multiplied by gN at the end, for O(PK) storage total. In the adjoint

will

x

method, all of the xn must be stored, because they are used in the backwards recurrence
for λn once xN is reached, requiring O(NK) storage. [The λn vectors, on the other
hand, can be discarded once λn−1 is computed, assuming the summation in eq. (2) is

() fcomputed on the fly. Only storage is needed for this summation, assuming nO K p
can be computed on the fly (or is sparse).] Whether the O(PK) storage for the direct
method is better or worse than the O(NK) storage for the adjoint method obviously
depends on how P compares to N .

4 A simple example

Finally, let us consider a simple example of a K = 2 linear recurrence:

xn = Axn−1 +
0
pn

with an initial condition � �
1

x0 = b = 0

and some 2 × 2 matrix A, e.g.

cos θ sin θ
A = − sin θ cos θ

3

� �

for θ = 0.1. Here, P = N : there are N parameters pn, one per step n, acting as
“source” terms in the recurrence (which otherwise has oscillating solutions since A is
unitary). Let us also pick a simple function g to differentiate, e.g.

g(x) = (x2)2 .

The adjoint recurrence for λn is then:

λn−1 = (f n

with “initial” condition: �	 �T 0N

x)T
λn = AT λn ,

λN = g = x N .2x2

Notice that this case is rather simple: since our recurrence is linear, the adjoint recur­
rence does not depend on xn except in the initial condition.

pThe gradient is also greatly simplified because fn is sparse: it is a 2 × N matrix
of zeros, except for the n-th column which is (0, 1)T . That means that the gradient (2)
becomes:

dgN

= λk
2 ,dpk

requiring O(N) work to find the whole gradient.
As a quick test, I implemented this example in GNU Octave (a Matlab clone) and

checked it against the numerical center-difference gradient; it only takes a few minutes
to implement and is worthwhile to try if you are not clear on how this works. For extra
credit, try modifying the recurrence, e.g. to make f nonlinear in x and/or p.

References

[1] R. M. Errico, “What is an adjoint model?,” Bulletin Am. Meteorological Soc.,
vol. 78, pp. 2577–2591, 1997.

[2] Y.	 Cao, S. Li, L. Petzold, and R. Serban, “Adjoint sensitivity analysis for
differential-algebraic equations: The adjoint DAE system and its numerical so­
lution,” SIAM J. Sci. Comput., vol. 24, no. 3, pp. 1076–1089, 2003.

[3] S. G. Johnson, “Notes

[4] G. Strang, Computational Science and Engineering.
Cambridge Press, 2007.

on adjoint methods for

Well

18.336.”

esley, MA: Wellesley­

4

October 2007.

MIT OpenCourseWare
http://ocw.mit.edu

18.335J / 6.337J Introduction to Numerical Methods
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

