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Floating Point Numbers 

•	 The gaps between adjacent numbers scale with the size of the numbers 

Relative resolution given by machine epsilon, ǫmachine = .5β1−p • 

• For all x, there exists a floating point x ′ such that |x − x ′ | ≤ ǫmachine|x| 

• Example: β = 2, p = 3, emin = −1, emax = 2 

0 1 2 3 4 5 6 7 

Denormalized Numbers 

• With normalized significand there is a “gap” between 0 and βemin 

• This can result in x − y = 0 even though x �= y, and code fragments like 

if x �= y then z = 1/(x − y) might break 

• Solution: Allow non-normalized significand when the exponent is emin 

• This gradual underflow garantees that 

x = y ⇐⇒ x − y = 0 
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Floating Point Formats 

Scientific notation: • 

1.602 10 −19 − � �� �× ���� ���� 
sign significand base exponent 

• Floating point representation 

± 
�
d0 + d1β

−1 + . . . + dp−1β
−(p−1)

�
βe , 0 ≤ di < β 

with base β and precision p 

•	 Exponent range [emin, emax] 

Normalized if d0 = 0 (use e = emin − 1 to represent 0) 

Special Quantities 

• ±∞ is returned when an operation overflows 

• x/ ±∞ = 0 for any number x, x/0 = ±∞ for any nonzero number x 

• Operations with infinity are defined as limits, e.g. 

= lim x =4 −∞
x→∞ 

4 − −∞ 

•	 NaN (Not a Number) is returned when the an operation has no 

well-defined finite or infinite result 

Examples: ∞−∞, ∞/∞, 0/0, 
√
−1, NaN ⊙ x• 
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IEEE Single Precision 

• 1 sign bit, 8 exponent bits, 23 significand bits: 

• Represented number: 

(−1)S × 1.M × 2E−127 

• Special cases: 

E = 0 0 < E < 255 E = 255 

M = 0 ±0 Powers of 2 ±∞ 
M = 0� Denormalized Ordinary numbers NaN 
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IEEE Single Precision, Examples IEEE Floating Point Data Types 

S E M Quantity 

0 11111111 00000100000000000000000 NaN 

1 11111111 00100010001001010101010 NaN 

0 11111111 00000000000000000000000 ∞ 
0 10000001 10100000000000000000000 +1 · 2129−127 · 1.101 = 6.5 

0 10000000 00000000000000000000000 +1 · 2128−127 · 1.0 = 2 

0 00000001 00000000000000000000000 +1 · 21−127 · 1.0 = 2−126 

0 00000000 10000000000000000000000 +1 · 2−126 · 0.1 = 2−127 

0 00000000 00000000000000000000001 +1 · 2−126 · 2−23 
= 2−149 

0 00000000 00000000000000000000000 0 

1 00000000 00000000000000000000000 −0 

1 10000001 10100000000000000000000 −1 · 2129−127 · 1.101 = −6.5 

1 11111111 00000000000000000000000 −∞ 

Single precision Double precision 

Significand size (p) 24 bits 53 bits 

Exponent size 8 bits 11 

Total size 32 bits 64 bits 

emax +127 +1023 

emin -126 -1022 

Smallest normalized 2−126 ≈ 10−38 2−1022 ≈ 10−308 

Largest normalized 2127 ≈ 1038 21023 ≈ 10308 

ǫmachine 2−24 ≈ 6 · · · 10−8 2−53 ≈ 10−16 

7 8 

Floating Point Arithmetic 

• Define fl(x) as the closest floating point approximation to x 

• By the definition of ǫmachine, we have for the relative error: 

For all x ∈ R, there exists ǫ with |ǫ| ≤ ǫmachine 

such that fl(x) = x(1 + ǫ) 

• The result of an operation ⊛ using floating point numbers is fl(a ⊛ b) 

• If fl(a ⊛ b) is the nearest floating point number to a ⊛ b, the arithmetic 

rounds correctly (IEEE does), which leads to the following property: 

For all floating point x, y, there exists ǫ with |ǫ| ≤ ǫmachine such that 

x ⊛ y = (x ∗ y)(1 + ǫ) 

• Round to nearest even in the case of ties 
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