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Modified Equation

Idea: Given FD approximation to PDE

Find another PDE which is approximated better by FD scheme.

Learn from new PDE about FD scheme.

Ex.: u; = cu,

Lax-Friedrichs: —2
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Modified equation:
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Advection-diffusion equation with diffusion constant
A2
=on( L - r? )
20t S~ s v
added diffusion  antidiffusion by central differencing
Ex.: Upwind:
Up — Cly = %cAw(l — T) Uy (exercise)
Compare:
Forc:l,r:% — DLF:%AQJ,DUW:%Am
Upwind less diffusive than LF.
Ex.: Lax-Wendroff
U — cg = AT (r? — 1)tgy, (uge cancels by construction)

Advection-dispersion equation with dissipation constant

p=—tcAz*(1—1?)
Disturbances behave like Airy’s equation
Message:

First order methods behave diffusive.
Second order methods behave dispersive.
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More on Advection Equation

U +cuy, =0

So far:
1. Upwind:
ur —yr
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—- = — e = O(At) + O(Ax)
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2. Lax-Friedrichs/Lax-Wendroft:
urtt—-ur uUr, -UR Ury — 20 + U,
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LF: 0 = SAY — e = 0(At) + O(Az?)
At , 2 2
LW:H:TC — e = O(At*) + O(Ax*)
Semidiscretization:
Central: u, = % + O(Az?)
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AT = — A = eigenvalues purely imaginary

Need time discretization that is stable for @ = Au with A =i, u € R

Linear Stability for ODE:
Region of absolute stability = {\ € C : method stable for & = \u}




Ex.:

Forward Euler Backward Euler Trapezoidal
Un+l — UTL + )\Atun un+1 _ 1 un un+1 _ 1 + %)\At
= (1+ XAt)u" 1 — At — SAAL

Stable if 1 + AA# < 1

No Yes Yes, but dangerous

RK4 RK2 Adams-Bashforth 3

Yes No Yes

Can also use higher order discretization of u,

(up to spectral). If central = need ODE solver for timestep
that is stable for u = iuu.

Spurious Oscillations

Stable does not imply “no oscillations.”

Ex.: Lax-Wendroff

=10 t=1

—_—

Image by MIT OpenCourseWare. Overshoots remain

bounded = stable.
Still bad (e.g. density can
become negative)




Total Variation:

TV (u) = Z |ujp1 — )| = / |ug(z)|dz “total up and down”

J
Method total variation diminishing (TVD), if

TV (u™) < TV (u™).

Bad News: Any linear method for advection that is TVD,
is at most first order accurate.

[i.e.: high order — spurious oscillations]
Remedy: Nonlinear Methods:
1. Flux-/Slope- Limiters

~> conservation laws; limit flux — TVD
2. ENO/WENO

(weighted) essentially non-oscillatory
(essentially TVD; no noticeable spurious oscillations)

ENO/WENO

Approximate u, by interpolation.

ENO: At each point consider multiple interpolating polynomials (through
various choices of neighbors). Select the most “stable” one to define u,.

WENO: Define u, as weighted average of multiple interpolants.
Higher order when u smooth, no overshoots when u non-smooth.



Ex.: Fifth order WENO

Y

vy Va v Va Vs Image by MIT OpenCourseWare.
s1= 130y — 205 + v3) + L(v) — vy + 3v3)?

So = 15(v2 — 203 + v4)” + +(v2 — v4)?

Sg = %(Ug —2uy +vs)2 + %;(31’3 — 4oy + v3)? i = UJ%;UJ

ay %/(6 +51)?

az = /(€ + s9)° e =107° - max(v;*)

ag = 15/(€ + s3) j

Sq = a1+ as +as
wy = ¢
wy = &
ws = 3

W — %(UM - (2u1 — Tvg + 11v3) + wy + (—vg + Hvg + 2v4) + w3 - (203 + Hvy — v5))

Left sided approximation to u, at x4
Right sided approximation to u, at x3

{

u; +cuy, =0
Upwind WENO with FE:
it -up { —c-WENOp,  UF >0
At —c- WENOyjgye Uj' <0
TVD time stepping
Consider method that is TVD with FE.

|
|

Is it also TVD with high order time stepping?

In general: “no.”

But for special class of ODE schemes:
Strong Stability Preserving (SSP) methods

Llyes'”



Ex.: FE (u") = u" + At f(u")
RK3-TVD
untt = %u” + % FE (%u” + %‘FE(FE(U”)))
Convex combination of FE steps
= Preserves TVD property

Compare: Classical RK4 cannot by written this way.
It is not SSP.

Popular approach for linear advection:
Uy + cuy, =0

RK3-TVD in time, upwinded WENODb in space.
2D/3D: Tensor product in space.

Image by MIT OpenCourseWare.

WENOb5-stencil
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