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11. Fluid Jets 

11.1 The shape of a falling fluid jet 

Consider a circular orifice of a radius a ejecting a flux Q of fluid density ρ and kinematic viscosity ν 
(see Fig. 11.1). The resulting jet accelerates under the influence of gravity −gẑ. We assume that the jet 
Reynolds number Re = Q/(aν) is sufficiently high that the influence of viscosity is negligible; furthermore, 
we assume that the jet speed is independent of radius, and so adequately described by U(z). We proceed 
by deducing the shape r(z) and speed U(z) of the evolving jet. 

Applying Bernoulli’s Theorem at points A and B: 

1 
ρU2 + ρgz + PA =

1 
ρU2(z) + PB (11.1) 

2 0 2 

The local curvature of slender threads may be expressed in terms of 
the two principal radii of curvature, R1 and R2: 

1 1 1 
∇ · n = + ≈ (11.2) 

R1 R2 r 

Thus, the fluid pressures within the jet at points A and B may be 
simply related to that of the ambient, P0: 

σ σ 
, PB ≈ P0 + (11.3) PA ≈ P0 + 

a r 

Substituting into (11.1) thus yields 

1 σ 1 σ 
ρU2 + ρgz + P0 + = ρU2(z) + P0 + (11.4) 

2 0 a 2 r 

from which one finds 
 1/2 

U(z)  2 z 2 ( a) 
= 1 + + 1−  (11.5) 

U0 
 Fr a We r  

     

acc. due to g dec. due to σ Figure 11.1: A fluid jet extruded 
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celerates under the influence of U2 INERTIA 0
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We = = = Weber Number (11.7) 
Note that σ gives rise to a gradi-

Now flux conservation requires that ent in curvature pressure within 
 r the jet, σ/r(z), that opposes the 

Q = 2π U(z)r(z)dr = πa2U0 = πr2U(z) (11.8) acceleration due to g. 
0 

from which one obtains 
( )

1/2 [

( )

]

−1/4 
r(z) U0 2 z 2 a 

= = 1 + + 1 − (11.9) 
a U(z) Fr a We r 

This may be solved algebraically to yield the thread shape r(z)/a, then this result substituted into (11.5) 
to deduce the velocity profile U(z). In the limit of We →∞, one obtains 

( )
−1/4 ( )1/2 

r 2gz U(z) 2gz 
= 1 + , = 1 + (11.10) 
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11.2 The Plateau-Rayleigh Instability 

We here summarize the work of Plateau and Rayleigh on the instability 
of cylindrical fluid jets bound by surface tension. It is precisely this 
Rayleigh-Plateau instability that is responsible for the pinch-off of thin 
water jets emerging from kitchen taps (see Fig. 11.2). 

The equilibrium base state consists of an infinitely long quiescent 
cylindrical inviscid fluid column of radius R0, density ρ and surface 
tension σ (see Fig. 11.3). The influence of gravity is neglected. The 
pressure p0 is constant inside the column and may be calculated by 
balancing the normal stresses with surface tension at the boundary. 
Assuming zero external pressure yields 

σ 
p0 = σ∇ · n ⇒ p0 = . (11.11) 

R0 

We consider the evolution of infinitesimal varicose perturbations on 
the interface, which enables us to linearize the governing equations. 
The perturbed columnar surface takes the form: 

˜ R0 + ǫeωt+ikz R = , (11.12) 

where the perturbation amplitude ǫ ≪ R0, ω is the growth rate of 
the instability and k is the wave number of the disturbance in the z-
direction. The corresponding wavelength of the varicose perturbations 
is necessarily 2π/k. We denote by ũr the radial component of the 
perturbation velocity, ũy the axial component, and p̃ the perturbation 
pressure. Substituing these perturbation fields into the N-S equations 
and retaining terms only to order ǫ yields: 

∂ũr 1 ∂p̃
= − (11.13) Figure 11.2: The capillary-driven 

∂t ρ ∂r 
instability of a water thread 

∂ũz 1 ∂p̃
(11.14) falling under the influence of= − 

∂t ρ ∂z gravity. The initial jet diameter 
The linearized continuity equation becomes: is approximately 3 mm. 

∂ũr ũr ∂ũz 
+ + = 0 . (11.15) 

∂r r ∂z 
We anticipate that the disturbances in velocity and 
pressure will have the same form as the surface dis­
turbance (11.12), and so write the perturbation ve­
locities and pressure as: 

( )
ωt+ikz (ũr, ũz, p̃) = R(r), Z(r), P (r) e . (11.16) 

Substituting (11.16) into equations (11.13-11.15) 
yields the linearized equations governing the per­
turbation fields: 

1 dP 
Momentum equations : ωR = − (11.17) 

ρ dr 

ik 
P (11.18) Figure 11.3: A cylindrical column of initial radius 

ρ 
ωZ = − 

R0 comprised of an inviscid fluid of density ρ, bound 
dR R by surface tension σ. 

Continuity: + + ikZ = 0 . (11.19) 
dr r 
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Eliminating Z(r) and P (r) yields a differential equation for R(r): 

2 d
2R dR (

r + r − 1 + (kr)2
) 
R = 0 . (11.20) 

dr2 dr 

This corresponds to the modified Bessel Equation of order 1, whose solutions may be written in terms of 
the modified Bessel functions of the first and second kind, respectively, I1(kr) and K1(kr). We note that 
K1(kr)→∞ as r → 0; therefore, the well-behavedness of our solution requires that R(r) take the form 

R(r) = CI1(kr) , (11.21) 

where C is an as yet unspecified constant to be determined later by application of appropriate boundary 
conditions. The pressure may be obtained from (11.21) and (11.17), and by using the Bessel function 

′identity I 0(ξ) = I1(ξ): 
ωρC ik 

P (r) = − I0(kr) and Z(r) = − P (r). (11.22) 
k ωρ 

We proceed by applying appropriate boundary conditions. The first is the kinematic condition on the free 
surface: 

∂R̃
= ũ · n ≈ ũr . (11.23) 

∂t 

Substitution of (11.21) into this condition yields 

ǫω 
C = . (11.24) 

I1(kR0) 

Second, we require a normal stress balance on the free surface: 

p0 + p̃ = σ∇ · n (11.25) 

( )

We write the curvature as σ∇ · n = 1 1+ , where R1 and R2 are the principal radii of curvature of R1 R2 

the jet surface: 
1 1 1 ǫ ωt+ikz = ≈ − e (11.26) 

R0 + ǫeωt+ikz R2R1 R0 0 

ωt+ikz 1
= ǫk2 e . (11.27) 

R2 

Substitution of (11.26) and (11.27) into equation (11.25) yields: 

σ ǫσ ( ) 
ωt+ikz p0 + p̃ = − 

R2 1− k2R0
2 e (11.28) 

R0 0 

Cancellation via (11.11) yields the equation for p̃ accurate to order ǫ: 

( ) 
ωtikz p̃ = − 

ǫσ 
1− k2R2 e . (11.29) 

R2 0
0 

Combining (11.22), (11.24) and (11.29) yields the dispersion relation, that indicates the dependence of 
the growth rate ω on the wavenumber k: 

ω2 σ I1(kR0) ( )
= kR0 1− k2R2 (11.30) 0ρR3 I0(kR0)0 

We first note that unstable modes are only possible when 

kR0 < 1 (11.31) 
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The column is thus unstable to disturbances whose 
wavelengths exceed the circumference of the cylinder. 
A plot of the dependence of the growth rate ω on the 
wavenumber k for the Rayleigh-Plateau instability is 
shown in Fig. 11.4. 
The fastest growing mode occurs for kR0 = 0.697, i.e. 
when the wavelength of the disturbance is 

λmax ≈ 9.02R0 (11.32) 

By inverting the maximum growth rate ωmax one may 
estimate the characteristic break-up time: 

� Figure 11.4: The dependence of the growth 
ρR0

3 

tbreakup ≈ 2.91 (11.33) rate ω on the wavenumber k for the Rayleigh­
σ Plateau instability. 

σR . µν 
Note: In general, pinch-off depends on Oh = 

( )1/2 
At low Oh, we have seen that τpinch ∼ ρR2 

, λ = 9.02R.σ 

At high Oh, when viscosity is important, τpinch ∼ µR , λ increases with µ.σ 
A water jet of diameter 1cm has a characteristic break-up time of about 1/8s, which is consistent with 
casual observation of jet break-up in a kitchen sink. 
Related Phenomena: Waves on jets 
When a vertical water jet impinges on a horizontal reservoir of water, a field of standing waves may be 
excited on the base of the jet (see Fig. 11.5). The wavelength is determined by the requirement that the 
wave speed correspond to the local jet speed: U = −ω/k. Using our dispersion relation (11.30) thus yields 

ω2 σ I1(kR0) ( )
U2 = = 1− k2R2 (11.34) 0k2 ρkR2 I0(kR0)0 

Provided the jet speed U is known, this equation may be solved in order to deduce the wavelength of the 
waves that will travel at U and so appear to be stationary in the lab frame. For jets falling from a nozzle, 
the result (11.5) may be used to deduce the local jet speed. 

11.3 Fluid Pipes 

The following system may be readily observed in a kitchen sink. When the volume flux exiting the tap 
is such that the falling stream has a diameter of 2 − 3mm, obstructing the stream with a finger at a 
distance of several centimeters from the tap gives rise to a stationary field of varicose capillary waves 
upstream of the finger. If the finger is dipped in liquid detergent (soap) before insertion into the stream, 
the capillary waves begin at some critical distance above the finger, below which the stream is cylindrical. 
Closer inspection reveal that the surface of the jet’s cylindrical base is quiescent. 

An analogous phenomenon arises when a vertical fluid jet impinges on a deep water reservoir (see 
Fig. 11.5). When the reservoir is contaminated by surfactant, the surface tension of the reservoir is 
diminished relative to that of the jet. The associated surface tension gradient draws surfactant a finite 
distance up the jet, prompting two salient alterations in the jet surface. First, the surfactant suppresses 
surface waves, so that the base of the jet surface assumes a cylindrical form (Fig. 11.5b). Second, the jet 
surface at its base becomes stagnant: the Marangoni stresses associated with the surfactant gradient are 
balanced by the viscous stresses generated within the jet. The quiescence of the jet surface may be simply 
demonstrated by sprinkling a small amount of talc or lycopodium powder onto the jet. The fluid jet thus 
enters a contaminated reservoir as if through a rigid pipe. 

A detailed theoretical description of the fluid pipe is given in Hancock & Bush (JFM, 466, 285-304). 
We here present a simple scaling that yields the dependence of the vertical extent H of the fluid pipe on 
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Figure 11.5: a) The field of stationary capillary waves excited on the base of a water jet impinging on a 
horizontal water reservoir. b) The fluid pipe generated by a falling water jet impinging on a contaminated 
water reservoir. The field of stationary capillary waves is excited above the fluid pipe. The grids at right 
are millimetric. 

the governing system parameters. We assume that, once the jet enters the fluid pipe, a boundary layer 
develops on its outer wall owing to the no-slip boundary condition appropriate there. 

Balancing viscous and Marangoni stresses on the fluid pipe surface yields 

V Δσ 
ρν ∼ , (11.35) 

δH H 

where Δσ is the surface tension differential between the jet and reservoir, V is the jet speed at the top of 
the fluid pipe, and δH is the boundary layer thickness at the base of the fluid pipe. We assume that the 
boundary layer thickness increases with distance z from the inlet according to classical boundary layer 
scaling: 

δ ( νz )1/2 
∼ . (11.36) 

a a2V 

Thus, at the base of a pipe of height H 

( 
νH 

)1/2 

δ(H) = (11.37) 
a2V 

Substituting for δ(H) from (11.36) into (11.35) yields 

(Δσ)2 

H ∼ (11.38) 
3ρµV 

The pipe height increases with the surface tension differential, and decreases with fluid viscosity and jet 
speed. 
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