
14. Instability of Superposed Fluids
 

Figure 14.1: Wind over water: A layer of fluid of density ρ+ moving with relative velocity V over a layer 
of fluid of density ρ− . 

Define interface: h(x, y, z) = z − η(x, y) = 0 so that ∇h = (−ηx,−ηy, 1). 
The unit normal is given by 

∇h (−ηx,−ηy, 1) 
n̂ = =	 (14.1) |∇h| ( )1/2 

ηx 
2 + ηy 

2 + 1

Describe the fluid as inviscid and irrotational, as is generally appropriate at high Re. 
Basic state: η = 0 , u = ∇φ , φ = 

2
Vx for z±.∓ 1 

Perturbed state: φ = ∓ 1Vx + φ± in z±, where φ± is the perturbation field. 2

Solve 
∇ · u = ∇2φ± = 0 (14.2) 

subject to BCs: 

1.	 φ± → 0 as z → ±∞ 

∂η 2.	 Kinematic BC: = u · n,∂t 
where 

( )
1 1 ∂φ± ∂φ± ∂φ± 

u = ∇ ∓ Vx + φ± = ∓ V x̂+ x̂+ ŷ + ẑ (14.3) 
2 2 ∂x ∂y ∂z 

from which ( )
∂η 1 ∂φ± ∂φ± ∂φ± 

= ∓ V + (−ηx) + (−ηy) +	 (14.4) 
∂t 2 ∂x ∂y ∂z 

Linearize: assume perturbation fields η, φ± and their derivatives are small and therefore can neglect 
their products. 

∂φ±Thus η̂ ≈ (−ηx,−ηy, 1) and ∂η = ± 1V ηx + ⇒∂t 2 ∂z 

∂φ± ∂η 1 ∂η 
= ∓ V on z = 0	 (14.5) 

∂z ∂t 2 ∂x 

3.	 Normal Stress Balance: p− − p+ = σ∇ · n on z = η.
 
Linearize: p− − p+ = −σ (ηxx + ηyy) on z = 0.
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We now deduce p± from time-dependent Bernoulli: 

ρ 
∂φ 1 

ρu2 + p+ ρgz = f(t) (14.6) + 
∂t 2 

2 1 ∂φ±where u = 
4
V 2 ∓ V ∂x + H.O.T. 

Linearize: ( )
∂φ± 1 ∂φ±

ρ± + ρ± ∓V + p± + ρ±gη = G(t) (14.7) 
∂t 2 ∂x 

so 

∂φ± ∂φ− V ∂φ− ∂φ+ 
p− − p+ = (ρ+ − ρ−)gη + (ρ+ − ρ− ) + (ρ− + ρ+ ) = −σ(ηxx + ηyy) (14.8) 

∂t ∂t 2 ∂x ∂x 

is the linearized normal stress BC. Seek normal mode (wave) solutions of the form 

iαx+iβy+ωt η = η0e (14.9) 

∓kz iαx+iβy+ωt φ± = φ0±e e (14.10) 

where ∇2φ± = 0 requires k2 = α2 + β2 . 
∂φ± ∂η V ∂η ∓ 1Apply kinematic BC: = at z = 0 ⇒∂z ∂t 2 ∂x 

1 ∓kφ0± = ωη0 ∓ iαV η0 (14.11) 
2 

Normal stress BC: 

k2ση0 = −g(ρ− − ρ+)η0 + ω(ρ+φ0+ − ρ−φ0−) + 
1 
iαV (ρ+φ0+ + ρ−φ0−) (14.12) 

2
 

Substitute for φ0± from (14.11):
 

[ ] [ ]
1 1 1 1 1 −k3σ = ω ρ+(ω − iαV ) + ρ−(ω + iαV ) + gk(ρ− − ρ+) + iαV ρ+(ω − iαV ) + ρ−(ω + iαV )
2 2 2 2 2 

so ( 
ρ− − ρ+ 

) 
1 2ω2 + iαV ω − α2V + k2C0

2 = 0 (14.13) 
ρ− + ρ+ 4 

( 
ρ−−ρ+ 

) 
g σwhere C2 ≡ + k.0 ρ−+ρ+ k ρ−+ρ+ 

Dispersion relation: we now have the relation between ω and k 

1 
( 
ρ+ − ρ− 

) [ 
ρ−ρ+ 2 

]1/2 

ω = i k · V ± (k · V ) − k2C2 (14.14) 02 ρ− + ρ+ (ρ− + ρ+)2 

where k = (α, β), k2 = α2 + β2 .
 
The system is UNSTABLE if Re (ω) > 0, i.e. if
 

ρ+ρ− 2 
C2(k · V ) > k2 (14.15) 

ρ− + ρ+
0 

Squires Theorem:
 
Disturbances with wave vector k = (α, β) parallel to V are most unstable. This is a general property of
 
shear flows.
 

We proceed by considering two important special cases, Rayleigh-Taylor and Kelvin-Helmholtz instability.
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14.1 Rayleigh-Taylor Instability 

We consider an initially static system in which heavy fluid overlies light fluid: ρ+ > ρ−, V = 0. Via 
(14.15), the system is unstable if 

ρ− − ρ+ g σ 
C2 + k < 0 (14.16) 0 = 

ρ+ρ− k ρ− + ρ+ 

σk2 
4π2σi.e. if ρ+ − ρ− > g = gλ2 . 

J 
σThus, for instability, we require: λ > 2πλc where λc = is the capillary length. 

Δρg 

Heuristic Argument: 
Change in Surface Energy: 

[f λ 
] 

1ΔES = σ · Δl = σ
0 
ds− λ = 

4
σǫ2k2λ. 

arc length 
Figure 14.2: The base state and the per-Change in gravitational potential energy: 

f λ ( ) turbed state of the Rayleigh-Taylor system, = − 1ρg h2 − h2 dx = − 1ρgǫ2λ.ΔEG 0 2 0 4 heavy fluid over light. When is the total energy decreased?
 
When ΔEtotal = ΔES + ΔEG < 0, i.e. when ρg > σk2 ,
 
so λ > 2πlc.
 
The system is thus unstable to long λ.
 
Note:
 

1. The system is stabilized to small λ disturbances by
 
σ
 

2. The system is always unstable for suff. large λ 

3. In a finite container with width smaller than 2πλc,
 
the system may be stabilized by σ.
 

4. System may be stabilized by temperature gradients
 
since Marangoni flow acts to resist surface defor­
mation. E.g. a fluid layer on the ceiling may be
 
stabilized by heating the ceiling.
 

Figure 14.3: Rayleigh-Taylor instability may 
be stabilized by a vertical temperature gradi­
ent. 
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14.2 Kelvin-Helmholtz Instability 

We consider shear-driven instability of a gravitationally stable base state. Specifically, ρ− ≥ ρ+ so the 
system is gravitationally stable, but destabilized by the shear. 

2 2Take k parallel to V , so (V · k) = k2V and the instability criterion becomes: 

g2 + σk (14.17) ρ−ρ+V > (ρ− − ρ+)
k 

Equivalently, 

2 λ 2π 
+ σ (14.18) ρ−ρ+V > (ρ− − ρ+) g

2π λ 

Note: 
Figure 14.4: Kelvin-Helmholtz instability: a gravi­

1. System stabilized to short λ disturbances by tationally stable base state is destabilized by shear. 
surface tension and to long λ by gravity. 

2. For any given λ (or k), one can find a critical
 
V that destabilizes the system.
 

Marginal Stability Curve: 

( 
ρ− − ρ+ g 1 

)1/2 

V (k) = + σk (14.19) 
ρ−ρ+ k ρ−ρ+ 

dV d 2V (k) has a minimum where = 0, i.e. V = dk dk
0. J 
This implies − Δρ + σ = 0 ⇒ kc = Δρg = k2 σ 
1 .lcap √

2The corresponding Vc = V (kc) = ρ−ρ+ 
Δρgσ is the min­

imal speed necessary for waves. 

Figure 14.5: Fluid speed V (k) required for 
the growth of a wave with wavenumber k. 

E.g. Air blowing over water: (cgs) √ 
2 2V = 1 · 103 · 70 ⇒ Vc ∼ 650cm/s is the mini-c 1.2·10−3 

mum wind speed required to generate waves. 
J 

1·103 −1These waves have wavenumber kc = ≈ 3.8 cm , so λc = 1.6cm. They thus correspond to capillary 
70 

waves. 
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