14. Instability of Superposed Fluids
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Figure 14.1: Wind over water: A layer of fluid of density p™ moving with relative velocity V over a layer
of fluid of density p~.

Define interface: h(z,y,z) = z —n(z,y) =0 so that Vh = (—n,,—ny,1).
The unit normal is given by
Vi (_nm, Ty, 1)

n = = 14.1
(Vh| (7734‘775‘*‘1)1/2 ( )
Describe the fluid as inviscid and irrotational, as is generally appropriate at high Re.
Basic state: n=0,u=V¢,6 ¢= :F%Vw for z+.
Perturbed state: ¢ = :F%Vz + ¢+ in z+, where ¢4 is the perturbation field.
Solve
V.ou=Vi =0 (14.2)

subject to BCs:
1. ¢4 - 0as z— £o0

2. Kinematic BC: % =u-n,
where

B 1 I 0+ .  Odx . 0
u=V <:F§Vz +¢i> = ¢§Vw+ 5 E 9y Y+ % (14.3)

from which

on (1 0p+ 0P+ 0P+
5 = (737 5 ) (o S om) + 52 (144)

Linearize: assume perturbation fields 7, ¢+ and their derivatives are small and therefore can neglect
their products. )
Thus 7~ (_nz;_ny,l) and % :ﬂ:%V’I]z-i- ;::t =

dp+ On _1_0n B
o ot T2 o 0 (145)

3. Normal Stress Balance: p_ —p, =0V :nonz=n.
Linearize: p_ — py = —0 (N)zz + Nyy) on z = 0.
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Chapter 14. Instability of Superposed Fluids

We now deduce p+ from time-dependent Bernoulli:

0
p a(f + pu +p+pgz = f(t) (14.6)
where u? = 1V ZFVa(zsi +H.O.T.
Linearize: 5‘(;3 96
+ + B
ps 20k 4 Lo, (qEVax) T pi + pagn = G(t) (14.7)
0

S A
p— —pt = (p+ — p- )gn+(p+%*p—%)+5(p aiﬂur ;*) =0 (Naz + Nyy) (14.8)

is the linearized normal stress BC. Seek normal mode (wave) solutions of the form
n= noeia;c+iﬁy+wt (14.9)

¢:|: _ ¢Oieq:kzeiaa:+i5y+wt (1410)

where V2¢4 = 0 requires k% = o + 2.

Apply kinematic BC: 8‘” = % F %V%Z at z=0=
1.
Fhoox = wino F iaVno (14.11)
Normal stress BC:
1.
kono = —g(p— — p+)no +wlpydos — p-do-) + iV (p+o+ + p—do-) (14.12)

Substitute for ¢o+ from (14.11):

1 1 1 1 1
—ko=w [p+(w - iiaV) +p_(w+ 2iaV)} + gk(p— — py) + iiaV P (w— §iaV) +p_(w+ iiaV)

SO

_ - 1
w? +iaV <Z+z+> w— Zazvfz +k2C2=0 (14.13)
- +

2 _ (p—=pr+\ g o
where Cj = (p7+p+) T+ p7+p+k;.

Dispersion relation: we now have the relation between w and k

1/2

1 p+—p> { p—p+ 2 200
w=-i|—— k- VL |——=(k-V) —k*C, 14.14
2 (p—+p+ AR 0 (14.14)
where k = (o, ), k? = o? + 2.
The system is UNSTABLE if Re (w) > 0, i.e. if
PP (V)P s 202 (14.15)

p—+ py

Squires Theorem:
Disturbances with wave vector k = («, §) parallel to V' are most unstable. This is a general property of
shear flows.

We proceed by considering two important special cases, Rayleigh-Taylor and Kelvin-Helmholtz instability.
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14.1. Rayleigh-Taylor Instability Chapter 14. Instability of Superposed Fluids

14.1 Rayleigh-Taylor Instability

We consider an initially static system in which heavy fluid overlies light fluid: py > p_, V = 0. Via
(14.15), the system is unstable if

c2=L="Pr9 ., T pco (14.16)
p+p— k- p—+py
3 M ag 2 71'20'
ie. if pp —p_ > % = 4g/\2 .
Thus, for instability, we require: A > 2w\, where A\, = , /ALpg is the capillary length.

Heuristic Argument:
Change in Surface Energy:
— _ A _ 1
ABs=o- AL =0 [ ds—)] = o\
arc length .
Change in gravitational potential energy: Figure 14.2: fThe base state and the per-
A turbed state of the Rayleigh-Taylor system
AEg = [ —1pg (h? — h2) dz = —L pge2a. yleigh-Taylor system,
“ fo 29 ( 0) 179 heavy fluid over light.

When is the total energy decreased?

When AE,pq = AEs + AEg < 0, i.e. when pg > ok?,
S0 A > 27l,.

The system is thus unstable to long .

Note:

1. The system is stabilized to small A disturbances by
g

2. The system is always unstable for suff. large A

3. In a finite container with width smaller than 27w,
the system may be stabilized by o.

Figure 14.3: Rayleigh-Taylor instability may
be stabilized by a vertical temperature gradi-

4. System may be stabilized by temperature gradients
since Marangoni flow acts to resist surface defor-
mation. E.g. a fluid layer on the ceiling may be €nt:
stabilized by heating the ceiling.
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14.2 Kelvin-Helmholtz Instability

We consider shear-driven instability of a gravitationally stable base state. Specifically, p— > p4 so the
system is gravitationally stable, but destabilized by the shear.

Take k parallel to V, so (V-k)> = k2V2 and the instability criterion becomes:
ppsV2 > (p- = py) % + ok (14.17)
Equivalently,
A 27 —_— =
ppsVZ > (p-—py) gy +o5  (1418) v2—-s P
7T —
Note:

Figure 14.4: Kelvin-Helmholtz instability: a gravi-
1. System stabilized to short A disturbances by tationally stable base state is destabilized by shear.
surface tension and to long A by gravity.

2. For any given A (or k), one can find a critical
V' that destabilizes the system.

Marginal Stability Curve:

p-—prg, 1 1z
Vik)=— 2+ Jk) 14.19
(k) ( oo E Yo (14.19) unstable

V(k) has a minimum where 4 = 0, ie. 2ZV2? =
0.
This implies —2f + 0 = 0 = k = /82 =
1 G
lcap.
The corresponding V, = V (k) = p72p+ VApgo is the min- C kCI k

imal speed necessary for waves.

Figure 14.5: Fluid speed V (k) required for

E.g. Air blowing over water: (cgs) the growth of a wave with wavenumber k.

V2 = 1555=5V1-10%-70 = V, ~ 650cm/s is the mini-
mum wind speed required to generate waves.

These waves have wavenumber k., = 1‘7183 ~3.8cm™ ', 50 A, = 1.6cm. They thus correspond to capillary

waves.
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