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19. Water waves
 
We consider waves that might arise from disturbing the surface of a pond. 

We define the normal to the surface: n = 
(−ζx ,1) 

(1+ζ2 )1/2 

−ζxx Curvature: ∇ · n = 
(1+ζ2 )3/2 

x

We assume the fluid motion is inviscid and irrota­
tional: u = ∇φ. Must deduce solution for velocity 
potential φ satisfying ∇2φ = 0. 
B.C.s: 

∂φ 1. = 0 on z = −h∂z 
2. Kinematic B.C.: 
Dζ = uz ⇒ ∂ζ ∂φ ∂ζ ∂φ on z = ζ. Figure 19.1: Waves on the surface of an inviscid ir­+ = Dt ∂t ∂x ∂x ∂z 
3. Dynamic B.C. (time-dependent Bernoulli ap- rotational fluid. 

plied at free surface): 

ρ∂φ 1 2 
+ ρ |∇φ| + ρgζ + pS = f(t), independent of x∂t 2 

where ps = p0 + σ∇ · n = p0 − σ ζxx 

)3/2 is the surface pressure. (1+ζ2 
x

Recall: unsteady inviscid flows Navier-Stokes: 
[ ( ) ]

∂u 1 2ρ + ρ ∇ u − u × (∇× u) = −∇ (p+Ψ) (19.1) 
∂t 2 

[ ]

ρ∂φ 1 2
For irrotational flows, u = ∇φ, so that u · ∇ ∂t 2+ ρ |∇φ| + p+Φ = 0. 

21Time-dependent Bernoulli: ρ∂φ + ρ |∇φ| + p+Φ = F (t) only. ∂t 2 

Now consider small amplitude waves and linearize the governing equations and BCs (assume ζ, φ are 
small, so we can neglect the nonlinear terms φ2, ζ2, φζ, etc.) 
⇒ ∇2φ = 0 in −h ≤ z ≤ 0.
 
Must solve this equation subject to the B.C.s
 

∂φ 1. = 0 on z = −h∂z
 
∂ζ ∂φ
 2. = on z = 0.∂t ∂z 

3. ρ∂φ + ρgζ + p0 − σζxx = f(t) on z = 0.∂t
 

ζêik(x−ct) ˆ ik(x−ct)
Seek solutions: ζ(x, t) = , φ(x, z, t) = φ(z)e
i.e. travelling waves in x-direction with phase speed c and wavelength λ = 2π/k. 

Substitute φ into ∇2φ = 0 to obtain φ̂zz − k2φ̂ = 0 
kzSolutions: φ̂(z) = e , e−kz or sinh(z), cosh(z). 
φTo satisfy B.C. 1: ∂ ˆ
= 0 on z = −h so choose φ̂(z) = A cosh k(z + h). ∂z 

From B.C. 2: 
ikcζ̂ = Ak sinh kh (19.2) 

( ) 
ik(x−ct)From B.C. 3: −ikcρA cosh kh+ ρgζ + k2σζ̂ e = f(t), independent of x, i.e. 

−ikcρA cosh kh+ ρgζ̂ + k2σζ̂ = 0 (19.3) 
( )

icζ 2 g σk (19.2)⇒ A = ⇒ into (19.3) ⇒ c = + tanh kh defines the phase speed c = ω/k.sinh kh k ρ 

Dispersion Relation: 
( ) 

σk3 

ω2 = gk + tanh kh (19.4) 
ρ 
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Chapter 19. Water waves 

Note: as h → ∞. tanh kh → 1, and we obtain deep water dispersion relation deduced in our wind-over­
water lecture. 

Physical Interpretation 

• relative importance of σ and g is prescribed by the Bond number Bo = ρg 
σk2 = σ(2π)

2 

ρgλ2 = (2π)2 ℓ
2 
c 

λ2 

where ℓc = 
J

σ/ρg is the capillary length. 

• for air-water, Bo ∼ 1 for λ ∼ 2πℓc ∼ 1.7cm. 

• Bo ≫ 1, λ ≫ 2πℓc: surface effects negligible ⇒ gravity waves. 

• Bo ≪ 1 : λ ≪ 2πℓc: influence of g is negligible ⇒ capillary waves. 

Special Cases: deep and shallow water. Can expand via Taylor series: For kh ≪ 1, tanh kh = 
( )

kh− 1 (kh)3 + O (kh)5 , and for kh ≫ 1, tanh kh ≈ 1.3 

A. Gravity waves Bo ≫ 1: c2 = k
g tanh kh.√ 

Shallow water (kh ≪ 1) ⇒ c = gh. All wavelengths travel at the same speed (i.e. non-dispersive), so 
one can only surf in shallow water. 

J

Deep water (kh ≫ 1) ⇒ c = g/k, so longer waves travel faster, e.g. drop large stone into a pond. 

2 σk B. Capillary Waves: Bo ≪ 1, c = ρ tanh kh. 

√ 
Deep water kh ≫ 1 ⇒ c = σkρ so short waves travel 
fastest, e.g. raindrop in a puddle. 

J 
σhk2 

Shallow water kh ≪ 1 ⇒ c = .ρ 

An interesting note: in lab modeling of shallow water waves 
( )

( ( )) 
2 g σk (kh ≪ 1) c ≈ + kh− 1 k3h3 + O (kh)5 = k ρ 3 

( ) 
( )

σh gh + − 1 gh2 k2 + O (kh)4 gh. In ripple tanks, ρ 3 
( )1/2 

3σchoose h = to get a good approximation to ρg
( )1/2 

( )

3σ 3·70 nondispersive waves. In water, ∼ 1/2 ∼ρg 103 

Figure 19.2: Deep water capillary waves, 0.5cm. 
whose speed increases as wavelength de­
creases. ( )1/4 

( )1/24gσ ρg From c(k) can deduce cmin = .ρ for kmin = σ 

Group velocity: when c = c(λ), a wave is called dispersive 
since its different Fourier components (corresponding to different k or λ) separate or disperse, e.g. deep √ 
water gravity waves: c ∼ λ. In a dispersive system, the energy of a wave component does not propagate 
at c = ω/k (phase speed), but at the group velocity: 

dω d 
cg = = (ck) (19.5) 

dk dk

√ √ J

∂ ∂ 1 cDeep gravity waves: ω = ck = gk. cg = ω = gk = g/k = 2 .∂k ∂k 2 
J1/2 J

σ/ρ ∂ω 3 3Deep capillary wave: c = , ω = σ/ρk3/2 ⇒ cg = = σ/ρk1/2 = c.k ∂k 2 2 
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Chapter 19. Water waves 

Flow past an obstacle.
 
If U < cmin, no steady waves are generated by the obstacle.
 
If U > cmin, there are two k−values, for which c = U :
 

1. the smaller k is a gravity wave with cg = c/2 < c ⇒ energy swept downstream. 

2. the larger k is a capillary wave with cg = 3c/2 > c, so the energy is swept upstream. 

Figure 19.3: Phase speed c of surface waves as a function of their wavelength λ. 
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