
2. Definition and Scaling of Surface 

Tension 

These lecture notes have been drawn from many sources, including textbooks, journal articles, and lecture 
notes from courses taken by the author as a student. These notes are not intended as a complete discussion 
of the subject, or as a scholarly work in which all relevant references are cited. Rather, they are intended as 
an introduction that will hopefully motivate the interested student to learn more about the subject. Topics 
have been chosen according to their perceived value in developing the physical insight of the students. 

2.1 History: Surface tension in antiquity 

Hero of Alexandria (10 AD - 70 AD) Greek mathematician and engineer, “the greatest 
experimentalist of antiquity”. Exploited capillarity in a number of inventions described in his 
book Pneumatics, including the water clock. 

Pliny the Elder (23 AD - 79 AD) Author, natural philosopher, army and naval commander 
of the early Roman Empire. Described the glassy wakes of ships. “True glory comes in doing 

what deserves to be written; in writing what deserves to be read; and in so living as to make 

the world happier.” “Truth comes out in wine”. 

Leonardo da Vinci (1452-1519) Reported capillary rise in his notebooks, hypothesized that 
mountain streams are fed by capillary networks. 

Francis Hauksbee (1666-1713) Conducted systematic investigation of capillary rise, his 
work was described in Newton’s Opticks, but no mention was made of him. 

Benjamin Franklin (1706-1790) Polymath: scientist, inventor, politician; examined the 
ability of oil to suppress waves. 

Pierre-Simon Laplace (1749-1827) French mathematician and astronomer, elucidated the 
concept and theoretical description of the meniscus, hence the term Laplace pressure. 

Thomas Young (1773-1829) Polymath, solid mechanician, scientist, linguist. Demonstrated 
the wave nature of light with ripple tank experiments, described wetting of a solid by a fluid. 

Joseph Plateau (1801-1883) Belgian physicist, continued his experiments after losing his 
sight. Extensive study of capillary phenomena, soap films, minimal surfaces, drops and bubbles. 
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2.2 Motivation: Who cares about surface tension? 

As we shall soon see, surface tension dominates gravity on a scale less than the capillary length (roughly 
2mm). It thus plays a critical role in a variety of small-scale processes arising in biology, environmental 
science and technology. 

Biology 

•	 all small creatures live in a world dominated 
by surface tension 

•	 surface tension important for insects for many 
basic functions 

•	 weight support and propulsion at the water 
surface 

•	 adhesion and deadhesion via surface tension 

•	 the pistol shrimp: hunting with bubbles 

•	 underwater breathing and diving via surface 
tension 

•	 natural strategies for water-repellency in 
plants and animals 

•	 the dynamics of lungs and the role of surfac­
tants and impurities 

Figure 2.1: The diving bell spider 

Geophysics and environmental science 

•	 the dynamics of raindrops and their role in the 
biosphere 

•	 most biomaterial is surface active, sticks to the 
surface of drops / bubbles 

•	 chemical, thermal and biological transport in 
the surf zone 

•	 early life: early vessicle formation, confine­
ment to an interface 

•	 oil recovery, carbon sequestration, groundwa­
ter flows 

•	 design of insecticides intended to coat insects, 
leave plant unharmed 

•	 chemical leaching and the water-repellency of 
soils 

•	 oil spill dynamics and mitigation 

•	 disease transmission via droplet exhalation 

•	 dynamics of magma chambers and volcanoes 

•	 the exploding lakes of Cameroon 

Technology 

•	 capillary effects dominant in microgravity set­
tings: NASA 

•	 cavitation-induced damage on propellers and 
submarines 

•	 cavitation in medicine: used to damage kidney 
stones, tumours ... 

•	 design of superhydrophobic surfaces e.g. self-
cleaning windows, drag-reducing or erosion-
resistant surfaces 

•	 lab-on-a-chip technology: medical diagnostics, 
drug delivery 

•	 microfluidics: continuous and discrete fluid 
transport and mixing 

•	 tracking submarines with their surface signa­
ture 

•	 inkjet printing 

•	 the bubble computer 
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Figure 2.2: a) The free surface between air and water at a molecular scale. b) Surface tension is analogous 
to a negative surface pressure. 

2.3 Surface tension: a working definition 

Discussions of the molecular origins of surface or interfacial tension may be found elsewhere (e.g. Is­

raelachvili 1995, Rowlinson & Widom 1982 ). Our discussion follows that of de Gennes, Brochard-Wyart 

& Quéré 2003. 
Molecules in a fluid feel a mutual attraction. When this attractive force is overcome by thermal 

agitation, the molecules pass into a gaseous phase. Let us first consider a free surface, for example 
that between air and water (Fig. 2.2a). A water molecule in the fluid bulk is surrounded by attractive 
neighbours, while a molecule at the surface has a reduced number of such neighbours and so in an 
energetically unfavourable state. The creation of new surface is thus energetically costly, and a fluid 
system will act to minimize surface areas. It is thus that small fluid bodies tend to evolve into spheres; 
for example, a thin fluid jet emerging from your kitchen sink will generally pinch off into spherical drops 
in order to minimize the total surface area (see Lecture 5). 

If U is the total cohesive energy per molecule, then a molecule at a free surface will lose U/2 relative to 
molecules in the bulk. Surface tension is a direct measure of this energy loss per unit area of surface. If the 
characteristic molecular dimension is R and its area thus R2, then the surface tension is σ ∼ U/(2R)2 . Note 
that surface tension increases as the intermolecular attraction increases and the molecular size decreases. 
For most oils, σ ∼ 20 dynes/cm, while for water, σ ∼ 70 dynes/cm. The highest surface tensions are 
for liquid metals; for example, liquid mercury has σ ∼ 500 dynes/cm. The origins of interfacial tension 
are analogous. Interfacial tension is a material property of a fluid-fluid interface whose origins lie in 
the different energy per area that acts to resist the creation of new interface. Fluids between which no 
interfacial tension arises are said to be miscible. For example, salt molecules will diffuse freely across a 
boundary between fresh and salt water; consequently, these fluids are miscible, and there is no interfacial 
tension between them. Our discussion will be confined to immiscible fluid-fluid interfaces (or fluid-gas 
surfaces), at which an effective interfacial (or surface) tension acts. 

Surface tension σ has the units of force/length or equivalently energy/area, and so may be thought 
of as a negative surface pressure, or, equivalently, as a line tension acting in all directions parallel to the 
surface. Pressure is generally an isotropic force per area that acts throughout the bulk of a fluid: small 
surface element dS will feel a total force p(x)dS owing to the local pressure field p(x). If the surface S is 
closed, and the pressure uniform, the net pressure force acting on S is zero and the fluid remains static. 
Pressure gradients correspond to body forces (with units of force per unit volume) within a fluid, and so 
appear explicitly in the Navier-Stokes equations. Surface tension has the units of force per length, and 
its action is confined to the free surface. Consider for the sake of simplicity a perfectly flat interface. A 
surface line element dℓ will feel a total force σdℓ owing to the local surface tension σ(x). If the surface 
line element is a closed loop C, and the surface tension uniform, the net surface tension force acting on 
C is zero, and the fluid remains static. If surface tension gradients arise, there may be a net force on the 
surface element that acts to distort it through driving flow. 
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2.4 Governing Equations 

The motion of a fluid of uniform density ρ and dynamic viscosity µ is governed by the Navier-Stokes 
equations, which represent a continuum statement of Newton’s laws. 

(
∂u 

)

ρ + u · ∇u = −∇p+ F + µ∇2 u (2.1) 
∂t 

∇ · u = 0 (2.2) 

This represents a system of 4 equations in 4 unknowns (the fluid pressure p and the three components of 
the velocity field u). Here F represents any body force acting on a fluid; for example, in the presence of 
a gravitational field, F = ρg where g is the acceleration due to gravity. 

Surface tension acts only at the free surface; consequently, it does not appear in the Navier-Stokes 
equations, but rather enters through the boundary conditions. The boundary conditions appropriate at a 
fluid-fluid interface are formally developed in Lecture 3. We here simply state them for the simple case of 
a free surface (such as air-water, in which one of the fluids is not dynamically significant) in order to get 
a feeling for the scaling of surface tension. The normal stress balance at a free surface must be balanced 
by the curvature pressure associated with the surface tension: 

n · T · n = σ(∇ · n) (2.3) 
[

1 
[

where T = −pI + µ ∇u + (∇u)T
]
= −pI + 2µE is the stress tensor, E = ∇u + (∇u)T

]
is the 

2 
deviatoric stress tensor, and n is the unit normal to the surface. The tangential stress at a free surface 
must balance the local surface tension gradient: 

n · T · t = ∇σ · t (2.4) 

where t is the unit tangent to the interface. 

2.5 The scaling of surface tension 

Fundamental Concept The laws of Nature cannot depend on arbitrarily chosen system of units. Any 
physical system is most succinctly described in terms of dimensionless variables. 

Buckingham’s Theorem For a system withM physical variables (e.g. density, speed, length, viscosity) 
describable in terms of N fundamental units (e.g. mass, length, time, temperature), there are M − N 
dimensionless groups that govern the system. 
E.g. Translation of a rigid sphere through a viscous fluid: 
Physical variables: sphere speed U and radius a, fluid viscosity ν and density ρ and sphere drag D; M = 5. 
Fundamental units: mass M , length L and time T ; N = 3. 
Buckingham’s Theorem: there are M − N = 2 dimensionless groups: Cd = D/ρU2 and Re = Ua/ν. 
System is uniquely determined by a single relation between the two: Cd = F (Re). 
We consider a fluid of density ρ and viscosity µ = ρν with a free surface characterized by a surface tension 
σ. The flow is marked by characteristic length- and velocity- scales of, respectively, a and U , and evolves 
in the presence of a gravitational field g = −gẑ. We thus have a physical system defined in terms of six 
physical variables (ρ, ν, σ, a, U, g) that may be expressed in terms of three fundamental units: mass, length 
and time. Buckingham’s Theorem thus indicates that the system may be uniquely described in terms of 
three dimensionless groups. We choose 

Ua Inertia 
Re = = = Reynolds number (2.5) 

ν Viscosity 

U2 Inertia 
Fr = = = Froude number (2.6) 

ga Gravity 

ρga2 Gravity 
Bo = = = Bond number (2.7) 

σ Curvature 

MIT OCW: 18.357 Interfacial Phenomena 7 Prof. John W. M. Bush 



2.5. The scaling of surface tension Chapter 2. Definition and Scaling of Surface Tension 

The Reynolds number prescribes the relative magnitudes of inertial and viscous forces in the system, 
while the Froude number those of inertial and gravity forces. The Bond number indicates the relative 
importance of forces induced by gravity and surface tension. Note that these two forces are comparable 

1/2
when Bo = 1, which arises at a lengthscale corresponding to the capillary length: ℓc = (σ/(ρg)) . For 
an air-water surface, for example, σ ≈ 70 dynes/cm, ρ = 1g/cm3 and g = 980 cm/s2, so that ℓc ≈ 2mm. 
Bodies of water in air are dominated by the influence of surface tension provided they are smaller than the 
capillary length. Roughly speaking, the capillary length prescribes the maximum size of pendant drops 
that may hang inverted from a ceiling, water-walking insects, and raindrops. Note that as a fluid system 
becomes progressively smaller, the relative importance of surface tension over gravity increases; it is thus 
that surface tension effects are critical in many in microscale engineering processes and in the lives of 
bugs. 

Finally, we note that other frequently arising dimensionless groups may be formed from the products 
of Bo, Re and Fr: 

ρU2a Inertia 
We = = = Weber number (2.8) 

σ Curvature 
ρνU Viscous 

Ca = = = Capillary number (2.9) 
σ Curvature 

The Weber number indicates the relative magnitudes of inertial and curvature forces within a fluid, and 
the capillary number those of viscous and curvature forces. Finally, we note that if the flow is marked by 
a Marangoni stress of characteristic magnitude Δσ/L, then an additional dimensionless group arises that 
characterizes the relative magnitude of Marangoni and curvature stresses: 

aΔσ Marangoni 
Ma = = = Marangoni number (2.10) 

Lσ Curvature 

We now demonstrate how these dimensionless groups arise naturally from the nondimensionalization of 
Navier-Stokes equations and the surface boundary conditions. We first introduce a dynamic pressure: 
pd = p− ρg · x, so that gravity appears only in the boundary conditions. We consider the special case of 
high Reynolds number flow, for which the characteristic dynamic pressure is ρU2 . We define dimensionless 
primed variables according to: 

a
′ ′ ′ ′ u = Uu , pd = ρU2 pd , x = ax , t = t , (2.11) 

U 

where a and U are characteristic lenfth and velocity scales. Nondimensionalizing the Navier-Stokes equa­
tions and appropriate boundary conditions yields the following system: 

(
∂u ′ 

)
1

′ 
∇ 

′ ′ ′ 
∇ ′2 ′ ′ + u · u = −∇pd + u , ∇ 

′ 
· u = 0 (2.12) 

∂t′ Re 

The normal stress condition assumes the dimensionless form: 

1 2 1
′ ′ E ′ ∇ 

′ 
−pd + z + n · · n = · n (2.13) 

Fr Re We 

The relative importance of surface tension to gravity is prescribed by the Bond number Bo, while that 
of surface tension to viscous stresses by the capillary number Ca. In the high Re limit of interest, the 
normal force balance requires that the dynamic pressure be balanced by either gravitational or curvature 
stresses, the relative magnitudes of which are prescribed by the Bond number. 

The nondimensionalization scheme will depend on the physical system of interest. Our purpose here 
was simply to illustrate the manner in which the dimensionless groups arise in the theoretical formulation 
of the problem. Moreover, we see that those involving surface tension enter exclusively through the 
boundary conditions. 
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Figure 2.3: Surface tension may be measured by drawing a thin plate from a liquid bath. 

2.6 A few simple examples 

Measuring surface tension. Since σ is a tensile force per unit length, it is possible to infer its value by 
slowly drawing a thin plate out of a liquid bath and measure the resistive force (Fig. 2.3). The maximum 
measured force yields the surface tension σ. 

Curvature/ Laplace pressure: consider an oil drop in water (Fig. 2.4a). Work is required to increase 
the radius from R to R+ dR: 

dW = −podVo − pwdVw + γowdA (2.14) 
' v ' ' v ' 

mech. E surface E 

where dVo = 4πR2dR = −dVw and dA = 8πRdR. 
For mechanical equilibrium, we require 
dW = −(p0 − pw)4πR2dR + γow8πRdR = 0 ⇒ 
ΔP = (po − pw) = 2γow/R. 

Figure 2.4: a) An oil drop in water b) When a soap bubble is penetrated by a cylindrical tube, air is 
expelled from the bubble by the Laplace pressure. 
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Note: 

1. Pressure inside a drop / bubble is higher than that outside ΔP ∼ 2γ/R ⇒ smaller bubbles have 
higher Laplace pressure ⇒ champagne is louder than beer. 
Champagne bubbles R ∼ 0.1mm, σ ∼ 50 dynes/cm, ΔP ∼ 10−2 atm. 

4σ2. For a soap bubble (2 interfaces) ΔP = , so for R ∼ 5 cm, σ ∼ 35dynes/cm have ΔP ∼ 3×10−5atm. R 

More generally, we shall see that there is a pressure jump across any curved interface: 

Laplace pressure Δp = σ∇ · n. 
Examples: 

1.	 Soap bubble jet - Exit speed (Fig. 2.4b) 
( )1/2 ( )

4σ 4×70dynes/cm Force balance: Δp = 4σ/R	 ∼ ∼ 300cm/s ∼ ρairU2 ⇒ U ∼ ρair R 0.001g/cm3·3cm

2.	 Ostwald Ripening: The coarsening of foams (or emulsions) owing to diffusion of gas across inter­
faces, which is necessarily from small to large bubbles, from high to low Laplace pressure. 

23.	 Falling drops: Force balance Mg ∼ ρairU2a gives 
v

fall speed U ∼ ρga/ρair.
 
drop integrity requires ρairU

2 ∼ ρga < σ/a
 
v

raindrop size a < ℓc = σ/ρg ≈ 2mm.
 
If a drop is small relative to the capillary length, σ maintains it against the destabilizing influence
 
of aerodynamic stresses.
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