
7. Spinning, tumbling and rolling 
drops 

7.1 Rotating Drops 

We want to find z = h(r) (see right). Normal stress 
balance on S: 
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Rotational Bond number = const. Define surface 
functional: f(r, θ) = z − h(r) ⇒ vanishes on the 
surface. Thus 
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Figure 7.1: The radial profile of a rotating drop. 

Brown + Scriven (1980) computed drop shapes and stability for B0 > 0: 

1. for	 Σ < 0.09, only axisymmetric solutions, 
oblate ellipsoids 

2. for 0.09 < Σ < 0.31, both axisymmetric and 
lobed solutions possible, stable 

3. for	 Σ > 0.31 no stable solution, only lobed 
forms 

Tektites: centimetric metallic ejecta formed from 
spinning cooling silica droplets generated by mete­
orite impact. 

Q1: Why are they so much bigger than raindrops? 
V 

σFrom raindrop scaling, we expect ℓc ∼ but Δρg 

both σ, Δρ higher by a factor of 10 ⇒ large tektite 
size suggests they are not equilibrium forms, but 
froze into shape during flight. 

Q2: Why are their shapes so different from those of 
raindrops? Owing to high ρ of tektites, the internal 
dynamics (esp. rotation) dominates the aerodynam­
ics ⇒ drop shape set by its rotation. 

Figure 7.2: The ratio of the maximum radius to 
the unperturbed radius is indicated as a function of 
Σ. Stable shapes are denoted by the solid line, their 
metastable counterparts by dashed lines. Predicted 
3-dimensional forms are compared to photographs 
of natural tektites. From Elkins-Tanton, Ausillous, 
Bico, Quéré and Bush (2003). 
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7.2. Rolling drops Chapter 7. Spinning, tumbling and rolling drops

Light drops: For the case of Σ < 0, ∆ρ < 0, a spinning drop is stabilized on axis by centrifugal pressures.
For high |Σ|, it is well described by a cylinder with spherical caps. Drop energy:
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Neglecting the end caps, we write volume V = πr2L and moment of inertia I = ∆mr = ∆ρπLr4.2 2

Figure 7.3: A bubble or a drop suspended in a denser fluid, spinning with angular speed Ω.

The energy per unit drop volume is thus E = 1∆ρΩ2r2 + 2γ .V 4 r
Minimizing with respect to r:
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Vonnegut’s Formula: γ = 1 ∆ρΩ2 V
3/2

)
allows inference of γ from L, useful technique for small γ

4π L
as it avoids difficulties associated with fluid-solid contact.
Note: r grows with σ and decreases with Ω.

7.2 Rolling drops

Figure 7.4: A liquid drop rolling down an inclined plane.

(Aussillous and Quere 2003 ) Energetics: for steady descent at speed V, MgV sin θ =Rate of viscous
dissipation= 2µ

∫
(∇u)2dV , where Vd is the dissipation zone, so this sets V ⇒ Ω = V/R is the angular

Vd

speed. Stability characteristics different: bioconcave oblate ellipsoids now stable.
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