8. Capillary Rise

Capillary rise is one of the most well-known and vivid illustrations of capillarity. It is exploited in a number
of biological processes, including drinking strategies of insects, birds and bats and plays an important role
in a number of geophysical settings, including flow in porous media such as soil or sand.

Historical Notes:

Leonardo da Vinci (1452 - 1519) recorded the effect in his notes and proposed that mountain streams

may result from capillary rise through a fine network of cracks

Jacques Rohault (1620-1675): erroneously suggested that capillary rise is due to suppresion of air

circulation in narrow tube and creation of a vacuum

Geovanni Borelli (1608-1675): demonstrated experimentally that h ~ 1/r
Geminiano Montanari (1633-87): attributed circulation in plants to capillary rise

Francis Hauksbee (1700s): conducted an extensive series of capillary rise experiments reported by

Newton in his Opticks but was left unattributed

“Jurin’s Law”.

James Jurin (1684-1750): an English physiologist who independently confirmed h ~ 1/r; hence

Consider capillary rise in a cylindrical tube of inner radius a (Fig. 8.2)

Recall:

Spreading parameter: S = ysv — (Vs + YLv)-

We now define Imbibition / Impregnation parame-
ter:

I =~sy —vsL =Ly cosd

via force balance at contact line.

Note: in capillary rise, I is the relevant parameter,
since motion of the contact line doesn’t change the
energy of the liquid-vapour interface.

Imbibition Condition: I > 0.

Note: since I = S + ypv, the imbibition condition
I > 0 is always more easily met than the spreading
condition, S > 0

= most liquids soak sponges and other porous me-
dia, while complete spreading is far less common.
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Figure 8.1: Capillary rise and fall in a tube for two
values of the imbibition parameter I:
I >0 (left) and I < 0 (right).



Chapter 8. Capillary Rise

We want to predict the dependence of rise height H on both tube radius a and wetting properties. We
do so by minimizing the total system energy, specifically the surface and gravitational potential energies.
The energy of the water column:

1 1
E = (vsL — vsv) 2maH + ngasz2 = 2maHI + §pga2ﬁH2

[ —
surface energy grav.P.E.
will be a minimum with respect to H when g—g =0

—_9¥sv—ysrL _9_I_ 3
= H=2 g0 nga’ from which we deduce

YLy cos 6
pgr

Jurin’s Law H=2 (8.1)

Note:

1. describes both capillary rise and descent: sign
of H depends on whether 6 > /2 or 6 < 7/2

2. H increases as 6 decreases. H,,,, for 8 =0

3. we've implicitly assumed R < H & R < l¢.

The same result may be deduced via pressure or
force arguments.

By Pressure Argument

Provided a < £, the meniscus will take the form

of a spherical cap with radius R = 5. Therefore
20 cos 0 _ 20cosf

PA=pPB— ¢  =Po— —( =po — pgH

= H= 2"#‘?‘9 as previously.

By Force Argument

The weight of the column supported by the tensile
force acting along the contact line:

pra’Hg = 2ma(ysy —7sp) = 2maoccosf, from
which Jurin’s Law again follows.

Figure 8.2: Deriving the height of capillary rise in
a tube via pressure arguments.
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8.1 Dynamics

The column rises due to capillary forces, its rise being resisted by a combination of gravity, viscosity, fluid
inertia and dynamic pressure. Conservation of momentum dictates & (m(t)2(t)) = Fror + [ pov - ndA,
where the second term on the right-hand side is the total momentum flux, which evaluates to ma?pz? = mz,
so the force balance on the column may be expressed as

. 1.
m +  mg, 2= 2maccosh — mg — wa’-pi® — 2maz-T, (8.2)
) ~ v ~ 2 _— —
Inertia  Added mass capillary force  yeight v viscous force

dynamic pressure

where m = ma?zp. Now assume the flow in the tube is fully developed Poiseuille flow, which will be
established after a diffusion time 7 = a—: Thus, u(r) = 22 (1 — ) and F' = ma?# is the flux along the

tube.

The stress along the outer wall: 7, = 9% o 4"2’

Finally, we need to estimate m,, which will domlnate the dynamics at short time. We thus estimate the
change in kinetic energy as the column rises from z to z+Az. AE, = A (2mU?), where m = mc+mo+mo
(mass in the column, in the spherical cap, and all the other mass, respectively). In the column, m. = ma®zp,
u = U. In the spherical cap, my = 2—’Ta?’p, u = U. In the outer region, radial inflow extends to oo, but
u(r) decays.

Volume conservation requires: ma?U = 2wa’u,(a) = u,.(a) = U/2.

Continuity thus gives: 2ma?u,(a) = 27r?u,.(r ) = u,n( ) = “; up(a) = 2"; U.

Thus, the K.E. in the far field: %mgg:fUQ =3 f u,-(r)? dm, where dm = p2mridr.

Hence

1 [ a® 2
ggf = U2 P <2—2U> 27‘(’7’2d7’ =
a T

a’ /00 ! dr ! a®
=T —_— = — 07T
pa | 52 TP

Now
1 , 1
AL, = §A (me 4+ mo + meo) U™ + §m2UAU =
1 1
= SAmU? + 5 (me +mo + m& ) 2UAU =
_ 1 2
= 3 (ma’pAz) U +(ma’pz+ jma *pt gma’p) UAU Figure 8.3: The dynamics of capillary rise.
Substituting for m = ma?zp, m, = £wa®p (added mass) and 7, = —%2 into (8.2) we arrive at
7 \. 20cosf® 1., 8uzz
(z + 6&) Z= . 34 = e gz (8.3)

The static balance clearly yields the rise height, i.e. Jurin’s Law. But how do we get there?
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Inertial Regime z
exp. decay
ST to z=H

1. the timescale of establishment of Poiseuille : -
flow is 7* = %, the time required for bound- [+, = | uly visenus:) | Wi Viseous
ary effects to diffuse across the tube added | Washbum's
mass z~t : Law
|
|

| z~t¥inertial
a
t

2. until this time, viscous effects are negligible
and the capillary rise is resisted primarily by Figure 8.4: The various scaling regimes of capillary
fluid inertia rise.
Initial Regime: z ~ 0, 2 ~ 0, so the force balance assumes the form %aé = 2“;’%9 We thus infer
Z(t) _ §0c050t2_

— 7 pa?
Once z > %a, one must also consider the column mass, and so solve (z + %a) Z = 2‘7;%9. As the col-
umn accelerates from 2 = 0, 22 becomes important, and the force balance becomes: %732 = 2";—25‘9 =

pa
1/2
= (400059) t
pa

Viscous Regime (t > 7*) Here, inertial effects become negligible, so the force balance assumes the form:
Z : 2
2";—259—%—92:0. WethusinferH—z:%,WhereHszZw,Z:%(g—l)
. . . 8uH
Nondimensionalizing: z* = z/H, t* =t/7, T = Ega_Z;
We thus have 2* = 1o = dt* = 2 .dz* = (-1 —

z*—1 1—2z*

Note: at t* — o0, 2* — 1.

1/2
z=U= (w) is independent of g, p.

LYz = t* = —2z* —In(1 — 2%).

1—z*

Early Viscous Regime: When z* < 1, we consider In(z* — 1) = —z* — %z*zand so infer z* = /2¢*.

1/2
Redimensionalizing thus yields Washburn’s Law: z = {%ﬁset}

Note that 2 is independent of g.

Late Viscous Regime: As z approaches H, z* &~ 1. Thus, we consider t* = [—z*—In(1—2*)] = In(1—2%)
and so infer z* =1 — exp(—t*).

Redimensionalizing yields z = H [1 — exp(—t/7)], where H = 2"/)‘;—%50 and 7 = %.

40 cos 6 ) 1/2 4a®
pa v
overshoot arises, giving rise to oscillations of the water column about its equilibrium height H.

4a’
v

Note: if rise timescale <« 7* = = inertial

, inertia dominates, i.e. H < Ujntertial™" = (

Wicking In the viscous regime, we have%;%e =

%aif + pg. What if the viscous stresses dominate
gravity? This may arise, for example, for predomi-
nantly horizontal flow (Fig. 8.5).

Force balance: 2gacosb — .z — %%22 = z =

t
(%O Y V/t (Washburn’s Law). Z() lg

Note: Front slows down, not due to g, but owing to

increasing viscous dissipation with increasing col- Figure 8.5: Horizontal flow in a small tube.
umn length.
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