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Solutions to Problem Set 1 

Edited by Chris H. Rycroft∗ 

February 17, 2005 

1 Rayleigh’s Random Walk 

We consider an isotropic random walk in 3 dimensions with independent identical displacements of 
length a, given by the PDF 

δ(r − a) 
p(�x) = 

4πa2 (r = |�x|) 

for which we verify ��� � 2π � π � 
p(�x)d�x = 

∞ δ(r − a) 
r 2 sin θ drdθdφ = 1.

4πa2 
0 0 0 

1.1 PDF of the position after n steps 

The characteristic function is given by 

p̂(�k) = 
� 
e i
�k·�x � 

= p(�x)e i�k·�xd�x. 

If we choose the spherical coordinate system such that φ is the rotation angle around �k (fixed in 
this integration), then �k �x = kr cos θ and· � π � 

p̂(�k) = 
2π ∞ 

e ikr cos θδ(r − a)r 2 sin θ drdθ
4πa2

0 0 

1 
� π 

= e ika cos θ sin θ dθ
2 0 

1 
� 1 

= e ikasds (with s = cos θ)
2 −1 

= 
sin(
ka 
ka)

(k = |�k|) 

for which we verify again the normalization condition p̂(�0) = 1. We know from the lecture that the 
PDF of the position after n steps is given by 

n k �xPn(�x) = 
� 
p̂(�k) 

�
e−i

� ·
(2
d
π

�k 
)3 . 

∗Based on solutions for problems 1 and 2 by Thierry Savin (2003), and for problem 3 by Chris H. Rycroft (2006). 
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Using the spherical coordinates system such that φ is now the rotation angle around �x (fixed in this 
integration), we can write (again using �k �x = kr cos θ)· 

Pn(�x) = 
1 

� π � ∞ 

e−ikr cos θ 
�
sin(ka)

�n 

k2 sin θ dkdθ
(2π)2 0 0 ka 

1 
� ∞ �sin(ka)

�n 

k2 
�� 1 

e−ikrsds 
� 

= dk with s = cos θ. 
(2π)2 0 ka −1 

Therefore 
1 

� ∞ �
sin(ka)

�n 

Pn(�x) = k sin(kr) dk. 
2π2r 0 ka 

1.2 Asymptotic formula 

We can write � 
Pn(�x) = 

1 ∞ 

k sin(kr)e nψ(k)dk
2π2r 0 

where � �
sin(ka)

ψ(k) = log . 
ka 

In the limit n → ∞, we are interested in the region around k = 0, where ψ(k) is a maximum. 
Taylor expanding ψ(k) at k = 0 gives 

sin(ka) 
= 1 − 

(ka)2 

+
(ka)4 

+ O(k6)
ka 3! 5! 

(ka)2 (ka)4 

ψ(k) = −
6 

− 
180 

+ O(k6). 

For this part, we are just interested in the first term. We write 

Pn(�x) ∼ 
2π

1 
2r 0 

∞ 

k sin(kr)e−n(ka)2/6dk 

and using relation (1) shown in appendix A, we obtain 

3 3/2 3r2 

Pn(�x) ∼ 
2πa2n 

exp −
2a2n

. 

1.3 Second Term 

Taking into account the next term in the Taylor expansion of ψ(k), and writing 

nψ(�k) = e−n(ka)2/6 e−n(ka)4/180 = e−n(ka)2/6 n(ka)4 

e−n(ka)2/6 e − 
180 

we get �� 4 � � 

Pn(�
1 ∞ 

k sin(kr)e−n(ka)2/6dk − 
na ∞ 

k5 sin(kr)e−n(ka)2/6dk .x) ∼ 
2π2r 0 180 0 
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After simplification, and using relations (1) and (2), we obtain 

� � � � � �
3 3/2 3r2 3 3 r2 9 r4 

2 4 3
Pn(�x) ∼ 

2πa2n 
exp −

2a2n 
1 − 

4n 
+

2a n2 − 
20a n

. 

By introducing the scaling variable ξ = r 
2a

3 
2n we can write 

a3Pn(�x) e−ξ
2 � 

1 
�

3 ξ4 �� 

(2π/3)−3/2 
∼ 
n3/2 

1 − 
n 4 

− ξ2 +
5 

and we see that the Central Limit Theorem holds as long as 

1 3 ξ4 

4 
− ξ2 + = O(1) ξ4 = O(n). 

n 5 
⇔ 

We conclude that the width of the central region is given by r = O(n3/4). 

2 Cauchy’s Random Walk 

We consider a random walk in one dimension with independent, nonidentical displacements, given 
by the PDF 

An 
pn(x) = 

2 2x + xn 

where xn > 0 for every n. 

2.1 Characteristic function 

The characteristic function for this PDF is given by 

p̂n(k) = 
� 
e ikx

� 
= 

+∞ 

pn(x)e ikxdx = An 

+∞ 

2 

eikx 

2 dx. x + xn−∞ −∞ 

To evaluate this we consider the complex integral � ikz e
dz 

z2 + x2 
nCR 

in which the integrand exhibits 2 poles at z = ±ixn, and where CR is one of the contours defined in 
figure 1, depending on the sign of k. For the first case where k > 0, the Residue Theorem gives us 

ikz ikz e e
dz = 2iπ Res . 

+ z2 + x2 
n z=ixn z2 + x2 

nRC

The left-hand side can be expressed as � ikz � +R ikx � ikz e e e
dz = dx + dz 

C + 2 + x2 
−R 

2 2 
R 

2 + x2z n xn + x Γ+ z nR 
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Figure 1: Contour CR. R is sufficiently big so that CR runs around the pole. 

where Γ+ is the open contour over which z is imaginary (with z = R). On this contour, we haveR |
 |


dz

ikz e−kRe


0.
< πR
 −−−−→
R→∞2 + x2 R2 2− xz
+Γ n nR 

We conclude that when R →∞, we have 

ikz +∞ eikxe

dz =
 dx.


2 + x2 2 + x2z
 x
C+ 
∞ n −∞ n 

The residue can be calculated as

ikz ikz e−kxne
 e


Res
 = lim (z − ixn) 
z ixn 

=

2ixn 

2 + x2 2 + x2z=ixn z
 z
→n n 

and hence we obtain

+∞ eikx π

e−kxndx = for k > 0. 
−∞ xn 

2 + x2 xn 

Using the other contour for k < 0, we show similarly that

+∞ eikx π kxndx = e for k < 0. 
−∞ xn 

2 + x2 xn 

Thus we can write1 

πAn
p̂n(k) = e−|k|xn ; 

xn 

the normalization condition gives us 

p̂n(0) = 1 ⇔ An = 
xn 

π 

and therefore 
p̂n(k) = e−xn|k|. 

We see that p̂n(k) is continuous at k = 0, but p̂�n(k) is not, since it doesn’t have the same value at 
k = 0+ and k = 0−. In terms of p(x), this is because �x�n = −i p̂�n(k = 0) is not defined. 

1Another rigorous way to prove this formula is to calculate the integral Z +∞ 

e−ikx dk 1 xn 
e−|k|xn = 

2 + x22π π x−∞ n 

as it is shown in paragraph 2.2, and then use the Inverse Fourier Transform Theorem. 
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2.2 PDF of the position after n steps 

From class, we know � � n �+∞ � dk 
Pn(x) = e−ikx p̂j (k) 2π−∞ j=1 � n+∞ dk � 

= e−ikx e−|k|Xn where Xn = xj2π 
j=1−∞� � 0+∞ dk dk 

= e−(ix+Xn)k + e−(ix−Xn)k 

2π 2π0 � −∞
1 1 1 

= since Xn > 0.
2π ix + Xn 

− 
ix − Xn 

Thus we obtain 
n1 Xn

Pn(x) = with Xn = xj . 
π X2 + x2 

n j=1 

As noticed earlier, the variance of the PDF is infinite. Since one of the assumptions of the CLT 
was violated, we can not apply the CLT to this problem and the resulting PDF is not in the form 
of the gaussian distribution. 

For the case of identical steps xn = a we get 

a 1 na 1 
p(x) = and Pn(x) = . 

π a2 + x2 π n2a2 + x2 

It is not surprising to not observe a gaussian behavior for the PDF after n steps. That is, the scaling 
ξ = x is not appropriate. However, by scaling ξ = x , the normalized PDF for the variable ξ is 

a
√
n na 

written 

P̃n(ξ) = naPn(x) = 
1 1 

independent of n. 
π 1 + ξ2 

3 Ergodicity breaking 

3.1 Generating the Cauchy random walk 

Let Y be a random variable which is uniformly distributed on the range [−π/2, π/2]. The cumulative 
density function is 

2y + π
P(Y < y) = 

2π 
If X = tan Y , then 

2y + π
P(tan Y < tan y) = 

2π 
2y + π

P(X < tan y) = 
2π 

2 tan−1 x + π
P(X < x) = ,

2π 
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Figure 2: Five Bernoulli random walks. 

which is the cumulative density function of X. By differentiating this, the PDF of X is given by 

d 2 tan−1 x + π 
p(x) = 

dx 2π 
1 

= . 
π(1 + x2)

Thus X is distributed according the Cauchy distribution; this gives us simple method for generating 
a Cauchy random walk, by first generating random numbers uniformly distributed on [−π/2, π/2] 
and then taking the tangent. Figures 2 and 3 show five sample Bernoulli and Cauchy random 
walks respectively. It is clear the two walks have very different structures, with the Cauchy walkers 
exhibiting very large single-step jumps. 

3.2 Finding the distribution of αN 

Appendix B contains a C++ code for calculating the steps of a Bernoulli or Cauchy random walk 
of length N , and computing the proportion of the steps αN which satisfy x > 0. 

The code was run for 4 × 107 walks of length N = 105, and the resulting distributions of αN are 
shown in figure 4. The curves for the Bernoulli and Cauchy random walks appear indistinguishable. 

3.3 The limiting distribution 

The two curves for αN very closely fit the functional form (x − x2)−1/2/π. 
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Figure 3: Five Cauchy random walks. 

A Appendix 

We consider the integral 

∞ 

cos(kα)e−βk
2 
dk =

1 ∞ 

cos(kα)e−βk
2 
dk

20 ��−∞ � �
1 ∞ 

e−ikα−βk
2 

∞ 
ikα−βk2 

= dk + e dk
4 −∞ −∞ 

4β 

= 
e
− α

2 �� ∞ 

e
−β 

“ 
k+i α 

” 2 

dk + 
� ∞ 

e
−β 

“ 
k−i α 

” 2 

dk 

� 

. 2β 2β 

4 −∞ −∞ 

To calculate the first integral, let us now consider the complex integral 

e−βz
2 
dz 

CL 

where CL is the contour defined in figure 5. 
Cauchy’s Theorem implies that this integral vanishes. Expanding the integration on each side 

of the contour CL gives � � L � α 

e−βz
2 
dz = e−βx

2 
dx + 

2β 

e−β(L+iy)2 
dy 

CL −� 
L 
−L 

e
−β 

“ 
x+i 

2
α
β 

0 ” 2 � 0 

e−β(−L+iy)2 
+ dx + dy 

L α 
2β 

= 0 

We see immediately to see that the second and fourth term in this expansion vanish as L →∞. In 
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Figure 4: Computed probability distributions of αN for the Bernoulli and Cauchy random walks. 
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2β 

Figure 5: Contour CL. 

this limit, we can conclude � “ ” 2 � �∞ 

e
−β x+i 

2
α
β dx = 

∞ 

e−βx
2 
dx = 

π
. 

β−∞ −∞ 

Similarly, we can also prove � “ ” 2 � �∞ 

e
−β x−i 

2
α
β 

∞ 

e−βx
2 π

dx = dx = . 
β−∞ −∞ 

Thus we obtain � 
α2 

4β 

∞ 

cos(kα)e−βk
2 
dk =

2

√
√π
β
e
− 

. 
0 

Using the equalities 

∞ d ∞ 

k sin(kα)e−βk
2 
dk = − cos(kα)e−βk

2 
dk 

dα0 0 
∞ 

k5 sin(kα)e−βk
2 
dk = − 

d5 ∞ 

cos(kα)e−βk
2 
dk 

dα5 
0 0 
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we obtain the useful relations 

α2 

4β 

∞ 

k sin(kα)e−βk
2 
dk = 

α
√
π
e
− 

,	 (1)
4β3/2 

0 

α2	 �∞	 α
√
π � 

k5 sin(kα)e−βk
2 
dk = e

− 
4β α4 − 20α2β + 60β2 .	 (2)

64β11/2 
0 

B C++ code for finding the distribution of αN 

The code below will calculate the distribution of αN for the Cauchy random walk. To generate the 
distribution of αN for the Bernoulli walk, uncomment the lines labeled Bernoulli and comment 
the lines labeled Cauchy. 

#include <string> 
#include <iostream> 
#include <cstdio> 
#include <cmath> 
using namespace std; 

const double p=3.1415926535897932384626433832795;

const long n=100000; //Number of steps in a walk

const long w=40000000; //Number of walkers


int main () {
long i,j,c,a[n+1];double y; 
for(i=0;i <=n;i++) a[i]=0; 

//	 long x; // Bernoulli 
double x; // Cauchy 
for(j=0;j <w;j++) {

x=0;c=0; 
for(i=0;i <n;i++) {

// x+=rand()%2==0?−1:1; // Bernoulli 
x+=tan(((double(rand())+0.5) 

/RAND MAX−0.5)∗p); // Cauchy 
if (x >0) c++; 

}
a[c]++;


}
for(i=0;i <=n;i++) {

y=double(i)/n; 
cout << i << " " << y << " " << a[i] << endl; 

}
} 


