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1 Asymptotics of Percentile Order Statistics 

Let Xi (i = 1, . . . , N) be independently identically distributed (IID) continuous random variables 
with CDF, P (x) = P(Xi ≤ x), and PDF, p(x) = dP . Let Y (α) be the 100αth percentile, which is dx N 
uniquely defined by ordering the outcomes, X(1) ≤ X(2) ≤ . . . ≤ X(N) (using the standard notation 

of order statistics) and setting YN 
(α) = X([αN ]) (where [x] is the nearest integer to x). 

1.1 Expression for the PDF of YN 
(α) 

To derive the PDF fN (y) of YN 
(α), we calculate the probability that the random variable YN 

(α) 

lies in an interval (y, y + dy), which equals fN (y)dy in the limit dy 0. Thinking of the event � � → 

y < Y N 
(α) = X([αN ]) < y + dy in terms of the set of ordered outcomes 

X(1) ≤ X(2) ≤ . . . ≤ X([αN ]−1) ≤ X([αN ]) ≤ X([αN ]+1) ≤ . . . ≤ X(N)� �� � � �� � 
([αN ] − 1) (N − [αN ]) 

we see that the event we are interested in can be broken down into three steps: 

1. choose X([αN ]) between y and y + dy; 

2. choose ([αN ] − 1) of the Xi’s less than y; 

3. choose (N − [αN ]) of the Xi’s greater than y + dy. 

Therefore, we find that 

P y < Y (α) 
< y + dy = N

N − 1 
P (y)[αN ]−1 (1 − P (y))N−[αN ] p(y)dy, N [αN ] − 1 

N −1where the factor N [αN ]−1 counts the number of different ways that we could have selected the Xi. 
The PDF fN (y) is simply this probability divided by dy: 

fN (y) = N
N − 1 

P (y)[αN ]−1 (1 − P (y))N−[αN ] p(y). (1)
[αN ] − 1 

∗Based on solutions for problems 2 and 4 by Chris H. Rycroft (2005), for problem 1 by Kevin Chu (2003), and for 
problem 3 by Michael Slutsky (2003). 
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1 �N (α)Note that unlike the random variable ZN = N n=0 Xn, YN does not necessarily tend towards 
the central regions of the parent PDF p(x) as N → ∞. For example, for α = 1 and N large, Y (α) 

N 
is most likely to be found in the upper tail of p(x) because the probability that all of the Xi’s are 
less than some y is given by P (y)N which is very small if y is not in the upper tail. 

Intuitively, the reason that Y (α) does not tend towards the central region, is that as N → ∞,N 
the histogram of the Xi’s should tend towards the parent PDF p(x). As a result, we would expect 
that YN 

(α) to tend towards the value xα which satisfies P (xα) = α, which is only the “central region” 
for α ≈ P (xmean). 

1.2 Asymptotic Approximation for the PDF of YN 
(α) 

Notice that fN (y) bears some resemblance to the probability that an asymmetric Bernoulli random 
walk takes [αN ] − 1 steps to the right out of a total of N − 1. This suggests that we should be able 
use the results from the asymptotic of a symmetric Bernoulli random walk to find a globally-valid 
asymptotic approximation for fN (y) as N →∞. 

While it is certainly possible to carry out the asymptotic analysis directly on the asymmetric 
Bernoulli random walk, a lot of work can be saved by first considering the discrete walk. Let p be 
the probability for the walker to take a step to the right and q = 1 − p be the probability for the 
walker to take a step to the left. Then, the exact probability that the walker takes m right steps 
out of a total n steps is � � 

n 
Pn(2m − n) = p m q n−m 

m 

where Pn(i) is the probability that the walker is at position i after n steps. This expression can be 
conveniently rewritten in terms of the probability for a symmetric Bernoulli walk: �� �� � � 

n 1 n

Pn(2m − n) = 2n p m q n−m 

m 2 
. 

Combining this result and the globally-valid asymptotic approximation for the symmetric Bernoulli 
walk, we see that 

Pn(2m − n) = 2n p m q n−mPsym. Bernoulli(2m − n) 

2n p m q n−m � 
2 

e−nψ(ks)∼ 
2πn(1 − ξ2) 

where 

ξ 1 + ξ 1 � � 
ψ(ks) = 

2
log 

1 − ξ 
+

2
log 1 − ξ2

ξ =
2m − n 

=
2m − 1. 

n n 

Using this approximation in the expression for fN (y), we find that 

1 
fN (y) ∼ Np(y)2N P (y)[αN ]−1 (1 − P (y))N−[αN ] � 

2π(N − 1)(1 − ξ2) 
e−(N−1)ψ(ks) 
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with 

2([αN ] − 1)
ξ = 

N − 1 
− 1. 

Taking the continuum limit, N →∞, we replace [αN ] by αN . In this limit, ξ → 2α − 1, 1 − ξ2 →
4α(1 − α) and 

α
(N − 1)ψ(ks) → αN − 1 − 

N 
2
− 1 

log 
1 − α 

+ 
N 

2
− 1 

log (4α(1 − α)) 

= (αN − 1) log α + N(1 − α) log(1 − α) + (N − 1) log 2. 

Thus, 

P (y)αN−1 (1 − P (y))N−αN Np(y)2N 

e−(αN−1) log α−N(1−α) log(1−α)−(N−1) log 2 fN (y) ∼ � 
2π(N − 1)4α(1 − α) 

N 
� 
P (y)

�αN−1 �1 − P (y)
�N(1−α)


∼ p(y)
2πα(1 − α) α 1 − α

.


1.3 A “Central Limit Theorem” for Order Statistics 

Let yα be the mean of the random variable Xi and let α be chosen such that P (yα) = α. Then a 

sort of “CLT” holds for the PDF of the order statistic YN 
(α) . 

For large N , most of the probability density comes from the region around the maximum of 
fα (y) because either P (y)Nα or (1 − P (y))N(1−α) will be very small away from the maximum. Thus, N 
it makes sense to approximate fN

α (y) by expanding around its maximum. Since, fN
α decays to zero 

so rapidly around its maximum, it is appropriate to write it in exponential form and expand the 
exponential: � 

fα (y) = 
N

e NW (y) 
N 2πα(1 − α)

where 

1 P (y) 1 − P (y) log p(y)
W (y) ≡ α − 

N 
log 

α 
+ (1 − α) log 

1 − α 
+ 

N
. 

Since fN
α (y) and W (y) reach a maximum at the same value of y, we can find ymax using W (y). 

Setting the derivative of W (y) to zero, we have 

1 p(ymax) p(ymax) 1 p�(ymax)0 = α − 
N P (ymax) 

− (1 − α)
1 − P (ymax)

+ 
N p(ymax) 

. 

In limit of large N , we can neglect the terms multiplied by 1/N , so we find 

p(ymax) (α − P (ymax)) = 0 

so that 
P (ymax) = α 

and 
ymax = yα. 
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Expanding W (y) around ymax in the limit N →∞, 

1 d2W 
W (y) ∼ W (yα) + 

2 dy2 (yα)(y − yα)2 + . . . 

log p(yα) (p(yα))2 

(y − yα)2 + . . . ∼ 
N 

− 
2α(1 − α)

Thus, to leading order, 

fN
α (y) ∼ 

N (p(yα))2 N (p(yα))2 

(y − yα)2 

2πα(1 − α) 
exp 

2α(1 − α) 

which is the Gaussian that we would expect for a “CLT”. Shifting and rescaling the PDF in the 
usual way, we find that the PDF for 

Y (α) 
N − yα 

z = 
σYN 

is a standard normal distribution with variance 

σ2 α(1 − α)
= YN N (p(yα))2 

Notice that the normalization automatically works out for this approximation. 

1.4 Application: Comparison of Mean and Median Statistics 

Suppose that Xi are IID standard normal random variables. Then yα = 0 and α = 1/2. Therefore 

in the limit of large N , the order statistic YN 
(0.5) has a normal distribution with mean 0 and variance � �2 1 

σ 
Y (0.5) = 

N 4N (p(0))2 

π 
= .

2N 

In contrast, the random variable 
N1 � 

ZN = Xi
N 

i=1 

has a normal distribution with variance, 

(σZN )
2 = 1/N. 

Thus, we see that σ (0.5) < σZN . This result justifies the practice of using the sample mean, ZN ,YN 

instead the sample median, YN 
(0.5), when estimating the value of an unknown population mean. 

While both statistics provide good estimates of the population mean, ZN is a better because it has 
a smaller variance. 
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Figure 1: Comparison of the computed σN with the approximating formula. Values of N of the 
form 100 × 2k for k = 1, 2, . . . , 13 are shown in order for the data points to be equally spaced. 

2 Winding angle of Pearson’s walk 

A C++ code to find the winding angle distribution of Pearson’s random walk is shown in appendix 
A. This code was run for 107 random walks of length N = 106, and plot of σ is shown in figure 2. 
We see that the data points match the theoretical prediction � � 1

Θ2 = log2 N +
4 − γ 

log N + O(1)N 4 2 
to a high degree of accuracy. 

Figure 2 shows the computed PDF of winding distribution for N = 106 . It is clear that this 
distribution has fairly large tails, and fitting a Gaussian 

21 x 

f(x) = e− 
2σ2√

2πσ2 

as shown in the diagram is not very satisfactory. A better choice would be the Cauchy distribution 
a 

g(x) = λ . 
π(a2 + x2)

Fitting over the range |x| < 12, we find that λ = 1.27 and a = 6.76, and we see from figure 2 that 
this matches extremely well in the central region. However there are still large deviations in the 
tails of the distribution, but since equation 2 tells us that σN scales logarithmically, this discrepancy 
may just be due to the fact that even N = 106 is not large enough to see a better match. 

3 Globally Valid Asymptotics 

Following the standard procedure for IID displacements, we write 

p̂(k) = 
1 ∞ 

e−ikx−|x|/adx = Re 
∞ 

e−t−i(ka)tdt =
1 

,
2a 0 1 + (ka)2 

−∞ 
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Figure 2: Computed PDF of Θ106 based on 107 random walks, with Gaussian and Cauchy fits. 

so that � � �N � 
PN (X) = 

1 ∞ 

dk eikX 1 
=

1 ∞ 

dp e−N[−ipζ+log(1+p2)],
2π 1 + k2a2 2πa −∞ −∞ 

where we define 
X 

ζ = , p = ka. 
Na

Thus, � 
PN (Naζ) = 

1 ∞ 

dp e−NψN (p,ζ),
2πa −∞ 

where ψN (p, ζ) = −ipζ + log 1 + p2 . Next, we explore the function ψN (p, ζ) in the complex 
p-plane for saddle-point(s): 

∂ψ 2p −i � � � 

∂p 
= 0 = −iζ + 

1 + p2 ⇒ p± = 
ζ 

1 ± 1 + ζ2 .s 

The second derivative 
∂2ψ 2 

= 2 
1 − p

∂p2 (1 + p2)2 

is nonzero and is finite as long as p =� ±i. To evaluate the integral, we deform the contour as 
indicated in Fig. 1. In either case (ζ > 0 and ζ < 0) we pick only one of the saddle-points, namely 
p−. The overall value of the integral is zero, since e−NψN (p,ζ) is analytic inside the contour. The 
integral over the (infinetely far) segments vanishes, so the integral along the real axis is equal to 
(minus) the integral along the displaced axis, which is dominated by the saddle point.1 The result 
of the saddle-point contribution is written most compactly if we parametrize using 

ζ = sinh t ⇒ p− = −i tanh (t/2) , 

Strictly speaking, along the line parallel to the real axis, Im(ψ) = const, i. e. the phase is not constant. However, 
it is changing slowly in the vicinity of the saddle point and its influence is minor. 

1
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Figure 3: The saddle points and the integration contours. 

so that 
ψN (p−) = cosh t − 1 + log (cosh (t/2)) 

and 
ψ�� (p ) = (1 + cosh t) cosh t.N −

Plugging these equations into the expression for the saddle-point contribution, we obtain 

1 2π 
PN (t) = 

2πa N (1 + cosh t) cosh t 
exp [−N (cosh t − 1 + log [cosh (t/2)])] . 

If ζ 0 then so does t, which leads to → 

PN (X) → � 
1 

exp 

� 

−
2(2a
X2 

2)N 

� 

,
2πN(2a2) 

which is just the Central Limit Theorem for a distribution with zero mean and variance of 2a2 . 
When X →∞, 

PN (X) e−N |ζ| = e−|X|/a.→ 

4 The Void Model 

4.1 Equation for the void probability 

Since a void at (M,N) has an equal probability of moving to (M − 1, N + 1) or (M + 1, N + 1), we 
know that 

VN+1(M) = 
VN (M − 1) + VN (M + 1) 

.
2 

Expressing this in terms of η(x, y) = η(Md,Nh) = VN (M) gives 

η(x, y + h) = 
η(x − d, y) + η(x + d, y) 

. (2)
2 
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For h and d small, we can write 

η + hηy + 
h2 

ηyy + . . . = 
η + dηx + d2 

2 
ηxx + η − dηx + d2 

2 
ηxx + . . . 

2 2 

which after simplification becomes 

h2 d2 

hηy + ηyy + . . . = ηxx + . . . . 
2 2 

We see that in order to get a sensible answer in the limit of h, d → 0, we must have h ∝ d2, and we 
therefore see it is appropriate to define a diffusion length of the form b = d2/2h. Thus, as h, d 0,→
we obtain 

ηy = bηxx 

which is a simple diffusion equation, but with the time variable replaced by the height, y. 

4.2 Equation for the particle probability 

To derive the recursion relation, we begin by considering a particle initially localized at (M,N). 
The ratio of the probability of it moving down-left to (M − 1, N − 1) as opposed to down-right to 
(M + 1, N − 1) is the same as the ratio of VN−1(M − 1) to VN−1(M + 1), and hence we see that 

P(down-left) = 
VN−1(M − 1) 

= 
VN−1(M − 1) 

VN−1(M + 1) + VN−1(M − 1) 2VN (M) 

P(down-right) = 
VN−1(M + 1) 

= 
VN−1(M + 1) 

. 
VN−1(M + 1) + VN−1(M − 1) 2VN (M) 

Thus, the probability of finding a particle at (M,N − 1) is just the probability of it being at 
(M +1, N) times the probability of it moving down-left, plus the probability of it being at (M −1, N) 
times the probability of it moving down-right: 

PN−1(M) = PN (M − 1) 
VN−1(M)

+ PN (M + 1) 
VN−1(M) 

. (3)
2VN (M − 1) 2VN (M + 1)

4.3 Continuum limit of PN (M) 

If we define ρ(x, y) = ρ(Md,Nh) = PN (M), then equation 3 can be written in the form 

2ρ(x, y − h)
= 
ρ(x − d, y)

+ 
ρ(x + d, y) 

. 
η(x, y − h) η(x − d, y) η(x + d, y)

Defining σ = ρ/η we obtain 

σ(x, y − h) = 
σ(x − d, y) + 

2 
σ(x + d, y) 

which is exactly the same as equation 2 but with η replaced by σ, and h replaced by −h. We 
therefore know immediately that σ satisfies a diffusion equation of the form 

−σy = bσxx. 
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Substituting in for σ and expanding the partial derivatives produces 

ηyρ ρy ρxx 2ρxηx 2ρηx 
2 ρηxx 

η2 − 
η 

= b
η 
− 

η2 + 
η3 − 

η2 . 

By rearranging, and making use of the equation ηy = bηxx, we obtain 

ρxηx ρηx 
2 ρηxx

ρy = 2b
η 

− 
η2 + 

η 
− bρxx 

= 2b
∂ ρηx − bρxx. 
∂x η 

4.4 Solution of the continuum equations 

Taking the Fourier transform of the equation ηy = bηxx in the x variable gives 

η̃y(k, y) = b(ik)2η̃(k, y) 
= −bk2η̃(k, y) 

and thus we obtain 
yη̃(k, y) = F (y)e−bk

2

for some arbitrary function F (y). The boundary condition η(x, 0) = δ(x) tells us that η̃(k, 0) = 1 
and therefore we get 

yη̃(k, y) = e−bk
2
. 

Taking the inverse Fourier transform, we obtain 

η(x, y) = 
1 ∞ 

e ikx η̃(k, y) dk
2π �−∞
1 ∞ 

e−bk
2y+ikxdk= 

2π −∞ 

4by ixe
− x 2 � ∞ 

e
−by 

“ 
k− 

2by 

” 2 

= dk
2π −∞

2 x 
4bye

− 

= .√
4πby 

From this result, we see that 
ηx x 
η 

= −
2by 

and therefore the equation for ρ becomes 

∂ 
yρy = −byρxx − (ρx) . 

∂x 

To solve this equation, we first take the Fourier transform with respect to x, which yields 

yρ̃y = −by(ik)2ρ̃− (ik) i
∂ 

ρ,̃
∂k 
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yρ̃y − kρ̃k = byk2ρ.̃

This is a first order partial differential equation, so we can apply the method of characteristics. The 
characteristics are given by 

dy dk dρ̃
= − =

˜y k ρbyk2 

from which we obtain 
ky = C 

and 
∂ρ̃

∂k 
= −b˜ ρC ⇒ ˜ρky = −b˜ = ρ = De−k

2yb 

for some constants C and D. Thus the general solution is 

ρ̃(k, y) = F (ky)e−k
2yb. 

To find F , we consider a boundary condition of the form ρ(x, y0) = δ(x − x0), which corresponds 
to a point particle initially localized at (x0, y0). Taking the Fourier transform of the boundary 
condition gives ρ̃(k, y0) = e−ikx0 and hence 

F (ky0)e−k
2y0b = e−ix0k 

F (ky0) = e−ix0k+k2y0b 

F (λ) = exp 
λ2b − ix0λ

. 
y0 

Thus � � � � 

ρ̃(k, y) = exp −bk2 y 
y x0ky 

1 − 
y0 

− i
y0 

and taking the inverse Fourier transform gives � � � � � �� 

ρ(x, y) = 
2
1 
π 

∞ 

dk exp −bk2 1 − 
y

y 

0 
+ ik x − 

x

y
0

0 

y 

−∞ � �2 

1 − x − xy
0

0 

y 

= � � � exp � � . (4) 
4πby 1 − y

y 
0 

4by 1 − y
y 
0 

Thus we see that the probability density function of the particle position is a gaussian for all values 
of y, with mean and variance 

µ = 
x0y

, σ2 = 2by 1 − 
y

. 
y0 y0 

We see that as y decreases, the mean particle position moves linearly towards the orifice. The 
variance of the distribution starts at 0 when y = y0 corresponding to the delta function initial 
condition; it then increases, reaching a maximum at y = y0/2 before decreasing to 0 as y approaches 
0, corresponding to the fact that the particle must exit through the point orifice at x = y = 0. 

This answer also demonstrates that in the Void Model particles will diffuse at the same rate as 
the voids, since the same diffusion parameter b appears in both solutions. From equation 4, we see 
when the particle falls to half its original height, its probability density function has a comparable 
width to the velocity profile. In reality, this is extremely unphysical, since experiments show that 
particles tend to diffuse on a much smaller scale than the width of the velocity profile. 
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A Appendix: C++ code for question 2 

#include <cstdio> 
#include <iostream> 
#include <fstream> 
#include <cmath> 
using namespace std; 

const double pi=3.1415926535897932384626433832795,p=2∗pi; 
const long m=10000; //Number of measurements 
const long n=100; //Number of steps per measurement 
const long w=400000; //Number of walkers 

inline double arg(double x,double y) {
return x+y>0?(x>y?atan(y/x):pi/2−atan(x/y)): 

(x>y?−atan(x/y)−pi/2:atan(y/x)+(y>0?pi:−pi)); 
} 

int main () {
long i,j,k,q[4000];int g; 
double t,x,y,yy,s[m]; 
for(k=0;k<m;k++) s[k]=0; 
for(i=0;i<4000;i++) q[i]=0; 
fstream file; 
for(j=0;j<w;j++) {

x=1;y=0;i=1;g=0;

for(k=0;k<m;k++) {


while(i++<n) {
yy=y+sin(t=double(rand())/RAND MAX∗p); 
if(yy>0) {

if(y>0) x+=cos(t);else 
if(x∗yy−(x+=cos(t))∗y<0) g−−; 

} else {
if(y<=0) x+=cos(t);else 
if(x∗yy−(x+=cos(t))∗y>0) g++; 

}
y=yy; 

}
s[k]+=(t=arg(x,y)+g∗p)∗t; 
i=0; 

}
i=int(2000+t∗10);if (i<0) i=0;if (i>=4000) i=3999; 
q[i]++; 

}
file.open("berger",fstream::out | fstream::trunc); 
for(k=0;k<m;k++) { 
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file	<< k+1 << " " << log(100.0∗(k+1)) << " " 
<< s[k]/w << " " << sqrt(s[k]/w) << endl; 

}
file.close();

file.open("pdf",fstream::out | fstream::trunc);

for(i=0;i<4000;i++) {


file	<< (i−1999.5)/10 << " " << q[i] << endl; 
}
file.close(); 

} 


