18.366 Random Walks and Diffusion, Spring 2005, M. Z. Bazant.

Problem Set 3

Due at lecture on Thursday, March 31, 2005.

1. Modified Kramers-Moyall Expansion. Let Py(z) be the probability density for a random
walker (or, equivalently, the concentration of a large number of independent walkers) to be at
position z at time ¢ty = N7. The walker’s displacements (x,t) — (2/,t + 7) are independently
chosen with a transition probability p(z/,t + 7|z, t) at regular intervals of time 7. Suppose that
the moments, which depend on time and space,

My, (z,t,7) = /p(x+y,t+7|w,t)y"dy (1)

are finite. Consider a continuous-time probability density (or concentration), p(zx,t), satisfying
p(z, NT) = Py(z).

In class, we formally derived a PDE expansion for p(x,t):

op X7 Loy s g\"
s Y —a_ D, )L )t 2
T h N S I AR @)

where D, (x,t,7) = M,(x,t,7)/(n! 7). Without the second term on the left-hand side, this is
called the Kramers-Moyall expansion.

In the limit 7 — 0, assume that the transition moments are finite and scale like, My ~ DT,
My ~ 2Dy1, and M,, ~ M2n/2 = O(7™/?) for n > 2 (which follows if the CLT holds on very small
time scales). At leading order, we have the Fokker-Planck equation,

% oz (D1p) = 922 (D2p) + O(17/7) (3)

but please calculate all terms up to O(7) in a “modified” expansion of the form

where the operators L,, involve only spatial derivatives.

2. Black-Scholes Formulae for Options Prices.
(a) Solve the Black-Scholes equation,
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backward from maturity, ¢ < T, for the long position of a call option, with payoff, w(z,T) =
y(z) = max(x — K, 0).

(b) Show that the solution is equivalent to a “risk neutral valuation”,

w(x,t) = "0 (y(x) (6)



where the expectation is taken with the final value of the underlying asset, zp = ftT dxy,
given by a geometric Brownian motion, which solves the SDE,

dx = rxdt + oxdz (7)
with volatility o and mean return, r, the risk free rate (not the actual expected return).

[Note: z7 has a lognormal distribution.

¢) Let we(z,t) and w,(x,t) be the prices of (long) call and put options, respectively, on the same
p
underlying asset, with the same maturity, T, volatility o, risk-free rate r, and strike price,
K. Explain why wy(z,t) can be found from your solution above, using “put-call parity”:

wy(x,t) = we(x, t) — x + KeT(T—t) ®)
3. Continuum Limit of Bouchaud-Sornette Options Theory. Consider a discrete random

walk for an underlying asset with (additive) independent steps. Assume the displacements y = dz
in each time step 7 have low order moments which depend on the current price,
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As discussed in class this is a general model for random returns in each time step 6t.

Assume the Bouchaud-Sornette strategy of minimizing the “quadratic risk” or variance of the
return of a position consition of the option and short ¢ of the underlying. Since minimizing the
total variance is equivalent to minimizing the variance in each time step, we get the least-squares
fit equations given in class, as a recursion for w(x,t).

w(x,t) = w(z, t)—d(z, t)z = e {/w(x + dz,t + 5t)p(dx, 6t)dox — ¢p(x,t) /(m + dz)p(dx, 6t)dox
(13)
and

o(x,t) = 3.5 /((51’ — pxdt)w(x + oz, t + dt)p(dz, dt)dox (14)

Consider the limit ¢ — 0 in these equations and (formally) derive a PDE for w(x,t) and an
expression for ¢(x,t) accurate to O(5t'/?). Each should involve only z derivatives of w (aside
from Ow/0t in the PDE). Recover the Black-Scholes equation at leading order O(1). [Extra
credit: derive the expansions to O(dt). Extra extra credit: Try solving them for a call option!]



