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18.366 Random Walks and Diffusion, Fall 2006, M. Z. Bazant. 

Problem Set 3 

Due at lecture on Th Oct 26. 

1.	 Inelastic Diffusion. Consider a ball bouncing on a rough surface. Each time the ball hits the 
surface it is scattered in a random direction. For any real surface, the collision is inelastic, i.e. the 
ball only retains a fraction 0 < r < 1 of its kinetic energy (r = “the coefficient of restitution”). 
Therefore, the ball’s expected height and horizontal displacement are reduced by factors of r and √

r, respectively, with each successive bounce. 

A reasonable model for this situation might be an ‘inelastic random walk’, with exponentially 
decreasing step lengths1 . Let ΔXn be IID random variables with zero mean and cumulants 
cl < ∞ (l ≥ 2), which represent the typical displacement after an elastic bounce. The inelastic 
nature of the collisions is reflected in a rescaling of this distribution with each step. Specifically, 
our model is the random walk 

N

XN = a nΔXn 
n=1 

with non-identical steps, where 0 < a < 1 is a constant (a = 
√

r). Do the analysis below for the 
case of one dimension (which would model transverse diffusion on a surface with random parallel 
grooves), but keep in mind that your results are easily generalized to higher dimensions. 

(a) Express the PDF, PN (x), of XN in terms of the PDF, p(x), of ΔXn. 

(b) Find the cumulants CN,l of XN (in terms of cl). 

(c) Let Cl = limN→∞ CN,l and a = 1 − � (� > 0). Show that C2m/Cm = O(�m−1) as � → 0.2 

(d) Let φ(ζ, �) = C2
1/2

P∞(ζC2
1/2), and show that “the Central Limit Theorem holds” as a → 1. 

In other words, show that

φ(ζ, �) → φo(ζ) = e−ζ2/2/

√
2π


as � 0 with ζ fixed2 This, of course, agrees with the limit of a simple random walk (a = 1). → 

2.	 Breakdown of the CLT for decaying walks. Simulate the two dimensional random walk 
where 

1 
pn(x, y) = 

4
(δy,0(δx,an + δx,−an ) + δx,0(δy,an + δy,−an ))	 (1) 

is the PDF of the nth (independent) step, which moves in the square lattice directions but has 
decaying step size an, as in problem 1. Plot the final positions X�∞ (simulated as N � 1) of a 
large number of walks for each of the choices of a below. 

(a) Compare the PDF of X (x component) for a = 0.99 to the approximation of Problem 1(d). ∞ 

(b) What is the exact PDF of X� for a = 1/2?∞ 

(c) Describe the CDF (cumulative distribution function) of X� for a = 1/3.∞ 

(d) Explore other values through simulations, such as a = 2−1/2 , 2−1/4 , 2−1/8 , ... and a = (
√

5 −
1)/2 (the golden mean). 

1See Lecture 14, 18.366 notes (2003). 
2Note, however, that the CLT does not apply for any fixed � < 0 as N →∞. 
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3.	 Shock structure. Find the traveling wave solution to Burgers equation, 

ct + ccx = Dcxx 

with boundary conditions c(−∞, t) = c− and c(∞, t) = c+ < c−, which describes a shock moving 
at velocity v(c+, c ).−

4.	 Discrete vs. continuous models with nonlinear drift. From problem 3, we find that the 
continuous traffic flow problem 

ρt + (u(ρ)ρ)x = Dρxx (2) 
u(ρ) = umax(1 − ρ/ρmax) (3) 

1 3 
ρ(−∞, t) = 

4
ρmax ρ(∞, t) = 

4
ρmax	 (4) 

has a solution for the form 

1 1 x 2D 
ρ(x, t) = ρmax 1 + tanh , λ = .	 (5)

2 2 λ umax 

which describes a stationary shock at the origin of width λ. 

Following the guidelines below, perform simulations of two discrete models (“A” and “B”), which 
would seem to be described by the continuum approximation (2). Compare the mean concentration 
profile ρ(x) averaged in time (after initial transients, assuming they decay) to the continuum 
approximation (5). Also plot some particle trajectories in the (x, t) plane for both models. 

Assume umax = 1, λ = 1, D = 1/2, and ρmax = 100. It would also be interesting (but not 
required) to vary these parameters, and the simulation algorithms below. 

•	 Initial condition. The simulation region is [L,L], where L � λ is needed to resolve the shock 
profile. Initially, particles can be placed uniformly at random in [−L, 0] with concentration 
ρmax/4, and in [0, L] with concentration 3ρmax/4. For example with L = 4, place 100 particles 
in [−4, 0] and 300 particles in [0, 4]. 

•	 Local concentration. In the models below, a particle at x interacts with its neighbors by 
responding to the local concentration ρ̃(x) and local gradient ˜ (x). Measure these quantitites ρx

over a scale l, which should be larger than the mean spacing on the left l � 4/ρmax and 
smaller than the scale of large macroscopic variations, l < λ (e.g. l = 0.2). For example, 
ρ̃(x) could the number of particles (including itself) in the region [x − l, x + l] divided by 2l, 
and ˜ (x) could be the number on the right minus the number on the left divided by l (withρx


appropriate changes near boundaries at x = ±L).


•	 Left boundary condition. Since particles near the left boundary have a drift velocity to the 
right u(ρmax/4) = 3umax/4 and concentration ρmax/4, we can approximate (4) by introducing 
a new particle at x = −L after each time step τ with probability τ/τ (τ < tau) where 
τ = 16/(3ρmaxumax). (Explain why.) If a particle crosses the left boundary x = −L, it should 
be reflected back into the simulation region to preserve the desired mean concentration. 

•	 Right boundary condition. Particles tend to leave the simulation region on the right at 
x = L, but their density must be controlled to set ρ = 3ρmax/4. One way to do this in each 
time step could be to remove all particles with x > L − l, and replace them with uniformly 
distributed particles in [L − l, L] with the desired concentration. 

•	 Dynamics. We consider two completely different models, which might be described by (2). 
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(a) (Discrete Model A, “gas dynamics”) Since Equation (2) ressembles the Fokker-Planck 
equation with a concentration-dependent drift, u(ρ), and diffusivity D, in each time step 
τ , give each particle a random displacement 

Δx = u(ρ̃)τ ±
√

2Dτ 
ρ̃ � 

= umaxτ 1 − 
ρmax 

± λumaxτ 

where + and − are chosen with equal probability 1/2. So as not to invalidate the local 
density measurement, the time step shoud be chosen such that umaxτ � l, e.g. τ = 0.01. 
Note that the random diffusive displacements are much larger than the deterministic drift 
displacements (and thus often backwards), as in the derivation of the Fokker-Planck 
equation for a Wiener process. This kind of model ressembles gas dynamics (for the 
velocity u(ρ) at a shock). 

(b) (Discrete Model B, “traffic flow”) In our continuum model for trafic flow, the motivation 
for the diffusion term is that drivers “look ahead” and adjust their speed according to 
the local concentration gradient. Therefore, also try a fully deterministic model, 

D
Δx = u(ρ̃) − 

ρ̃
ρ̃x τ 

This model seems very different from Model A and may be unstable and more sensitive 
to initial conditions and parameters, but chaos in other deterministic nonlinear systems 
is known to lead to simple diffusive behavior, which resembles a random process. 


