
�
 �

�
� �

����
 ����

�

Solutions to Problem Set 3

Chris H. Rycroft

October 30, 2006

1 Inelastic diffusion

1.1 The PDF of PN (x)

The PDF of the random variable anΔXn is p(xa−n)a−n . If ΔXn has characteristic function p̂(k)
then anΔXn has characteristic function

∞

e−ikx p(xa
−n)

dx =

∞

e−ikya
n
p(y) dy

an
−∞ −∞

= p̂(kan).

By the convolution theorem, we know that the characteristic function of XN can be written as

P̂N (k) =
N�
p̂(kan)

n=1

and hence the PDF is given by

∞ eikx dx
PN (k) =

N�

2π
n=1−∞

p̂(kan)

N�
=

2π
n=1−∞ −∞

1.2 The cumulants of XN

∞ eikx dx ∞

e−ikya
n
p(y) dy.

The cumulant generating function of the nth step is given by

ψn(k) = log p̂(kan)

and therefore the lth cumulant is given by

i−l
dlψn

dkl
= a
lni−l

dl

dkl
ψn = a
ln cl.

k=0 k=0

If random variables are added, then their cumulants add. We therefore know that the cumulants
of XN are given by

N

CN,l =
al(1 − alN)ln cl =

1 − al
a
 cl.

n=1

1

�

� � �

�

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions 2

1.3 Limits as N →∞

By taking N →∞ in the above expression, we see that the cumulants of X∞ are given by

la
Cl = cl.1 − al

If a = 1 − � where � > 0 is small, then we see that

C2m a2m �
1 − a2 �m

c2m =
C2 2m a2 c2
m 1 − a m

(2� − �2)m c2m =
1 − (1 − �)2m c2 � m�

2m�m 1 − 2
� m

c2m =
c2m� − 2m(2m−1) �2 + . . . m
2

2

= 2m�m−1 1 − �m + . . . c2m

2m − 2m(2
2
m−1) 2

� + . . . cm

= O(�m−1).

1.4 A “Central Limit Theorem”

The PDF of X can be written as ∞

P (x) =
∞ dk

e ikx+ψ∞(k)
∞ 2π �−∞ � � ∞ dk C2k

2 iC3k
3 C4k

4

=
2π

exp ikx + 0 −
2

−
6

+
24

.
−∞

If x = ζC2
1/2 we see that

1/2 1/2
∞ dl l2 C3l

3 C4l
4

φ(ζ, �) = C2 P∞(ζC2) =
2π

exp ilζ −
2
− i

6C1/2
+

24C2
2 .

−∞ 2

From the previous result, we know that as � 0, the terms involving the higher cumulants tend to →
zero. Therefore we have

φ(ζ, �) φ(ζ) =
∞ dl

e ilζ−l
2/2 →

2π−∞

e−ζ
2/2

= .√
2π

2 Breakdown of the CLT for decaying walks

2.1 The PDF of X∞ for a = 0.99

Appendix A shows a simple C++ code to simulate 105 walkers from the decaying PDF. Figure
1 shows the PDF of x component of this distribution, and figure 2 shows a comparison to the

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions 3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-30 -20 -10 0 10 20 30

P

(x
)

∞

x

Figure 1: Simulated PDF of X for a = 0.99 based on 109 trials. ∞

formulae calculated in question 1. We see that the two curves match to a very high degree of
accuracy, particularly in the central region. We know however that this match will not continue
forever: since X� is bounded, its PDF will be uniformly zero outside of some region. However a ∞
Gaussian features non-zero probabilities everywhere.

2.2 The exact PDF of X∞ for a = 1/2

To find the PDF of X for a = 1/2 we first consider the change of variables X� = (x, y) R� = (r, s)∞ →
given by

1 + x + y
r =

2

1 + x − y

s = .
2

In the transform variables, the walk starts from R� 0 = (1/2, 1/2) and the PDF of the nth step is
given by

1
pn(r, s) =

4
(δr,−1/2n+1 + δr,1/2n+1)(δs,−1/2n+1 + δs,1/2n+1).

From this from, it is clear that the variables r and s are independent. We see that the Nth step of
the r component can be written as

N1 � 2In − 1
RN = +

2n+12
n=1

� �

� � �

�

�

�

�

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions	 4

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

-30 -20 -10 0 10 20 30

P
 ∞

 (x
)

x

Simulation
Gaussian

Figure 2: Simulated PDF of X for a = 0.99 based on 109 trials on a log scale, compared with a ∞
Gaussian curve with a variance calculated using the formula derived in question 1.

where the In’s are independent random variables which take values 0 and 1 with equal probability.
This can be rewritten as

NN

RN =
2n+1 +2

−
1
 1
 In

2n

N

n=1 n=1

1 1 1 − 1 In2N +=
2
−

22 1 2n1 −
2 n=1

N

2n
n=1

1

= +

2N+1

In
.

In the limit, as N →∞, we obtain

N

∞ 2n .

n=1

In
R =

Thus, the binary expansion of R is∞

R = 0.I1I2I3I4I5I6 . . . ∞

From this form, it is clear that every possible binary expansion between 0 and 1 can be achieved,
each with equal probability. Thus R is uniformly distributed on the interval [0, 1]. Since the same ∞
is true for S , we know that the joint PDF is given by ∞

P (r, s) =
1 for 0 < r < 1, 0 < s < 1

∞ 0 otherwise.

Thus the PDF of X is given by ∞

P∞(r, s) =

1
2	 for |x − y| < 1, |x + y| < 1

otherwise. 0

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions 5

0

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4

C
 ∞

 (x
)

x

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
 ∞

 (q
)

q

Figure 4: The cumulative distribution func-
Figure 3: The cumulative distribution func-

tion of the rotated variable q = 1/2 + x − y
tion of the x component of X�∞ for a = 1/3.

for a = 1/3.

2.3 The CDF of X�∞ for a = 1/3

To compute the CDF of x component of X� for a = 1/3, we first consider the possible values that ∞
it can take. The maximum that x can increase by at the nth step is 1/3n and thus the maximum
value that x can take is ∞ �∞ 1 1 1

= = .
3n 3(1 − 1) 2

n=1 3

By symmetry, we therefore know that X∞ can take values in the range [−1/2, 1/2]. We also note
that the sum of steps starting at n = 2 follows the same distribution as X , but scaled by 1/3. If ∞
the first step is ΔX1, then X∞ lies in the interval [ΔX1 − 1/6, ΔX1 + 1/6]. For the three possible
choices ΔX1 = −1/3, 0, 1/3 these intervals are mutually exclusive, and this allows us to write the
CDF C (x) recursively as ∞ ⎧ ⎨ C (3x + 1)/4 for x < −1

6
C (x) = 1/

∞
4 + C (3x)/2 for −1 < x < 1

∞ ⎩ ∞ 6 6
3/4 + C∞(3x − 1)/4 for 1

6 < x

This can be easily calculated using a recursive function, and a graph is shown in figure 3. It is also
interesting to consider the CDF of X� in a coordinate rotated by 45◦. Suppose we consider the ∞
coordinate transformation

1
p = + x + y

2
1

q =
2

+ x − y

Then we find that the walk from starts from (p, q) = (1/2, 1/2) and the PDF of the nth step is
given by

1
pn(r, s) =

4
(δr,−1/3n + δr,1/3n)(δs,−1/3n + δs,1/3n).

�

� �

� �

�

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions 6

From this from, it is clear that the variables p and q are independent. We see that the Nth step of
the q component can be written as

N1
 2In − 1
3n

N

QN = +
2

n=1

N

= +
2
−

3n

1
 1
 2In

3n
n=1 n=1

N�

3 =1n

1 1 1 − 1 2In

3n
3N +=

2
−

3 11 −

N

3n

�

=1n

1

= +

3N+1

2In

where the IN are independent random variables that take values of 0 and 1 with equal probability,
as in the previous section. In the limit as N →∞, we obtain

N

∞ 2n .

n=1

In
Q =

Thus, the expansion in base-3 of R is∞

Q = 0.(2I1)(2I2)(2I3)(2I4)(2I5)(2I6) . . . ∞

and hence every possible number whose base-3 expansion contains only 0’s and 2’s with no 1’s
occurs with equal probability. The numbers which satisfy this property form the Cantor set, a well
known fractal distribution that can be obtained by taking the unit interval, removing the middle
third, and then recursively removing the third of each new interval. The cumulative distribution
can be written as

C
∞(q) =

⎧⎨ ⎩

C (3q)/2 for q < 1
∞ 3

21/2 for 1
3 < q < 3

C∞(3q − 2)/2 + 1/2 for 2
3 < q.

This is referred to as the Cantor function and is shown in figure 4. It is a type of function referred
to as “Devil’s staircase”. A function f(x) is a Devil’s staircase on the interval [a, b] if it satisfies the
following properties:

• f(x) is continuous on [a, b].

• There exists a set N of measure 0 such that for all x outside of N , f �(x) exists and is zero.

• f(x) in nondecreasing on [a, b].

• f(a) < f(b).

� �

� �

�

�

3

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions 7

2.4 Other values of a

Figure 5 shows the PDF of the decaying walk for twelve different values of a. As a increases, we
see a progression from a sparse PDF (similar to a Cantor set), through a uniform PDF for a = 0.5,
to a PDF approaching a Gaussian as a approaches 1. For the case when a = 2−1/2, we can write
the random variable as

X� =
∞

In
∞ 2n/2

n=1

Where the I�
n take values (1, 0), (−1, 0), (0, 1), and (0, −1) with a quarter probability each. This

can be rewritten as

�
√

2
∞

I�2m−1
∞

I�2m
X = +∞ 2m 2m

m=1 m=1

=
√

2Y�1 + Y�0

where Y�1 and Y�0 are decaying walks with parameter a = 1/2. From part (b), we know that these
are uniformly distributed on the region |x| + |y| < 1, which allows us to easily construct an analytic
solution to the resultant PDF as a convolution two simple PDFs. Similarly, we have

3

X� = 2i/4Y�i for a = 2−1/4
∞

i=0

7

X� = 2i/8Y�i for a = 2−1/8
∞

i=0

where the Y�i are all decaying walks with parameter a = 1/2; again, this easily allows us to construct
the resultant PDF as a convolution of a finite number of simple PDFs.

Figure 5 also shows the PDF for the case for when a is equal to the golden mean, (
√

5 − 1)/2.
For this value, 1 − a = a2, and this special relationship results in sections of the PDF appearing
self-similar.

Shock structure

We are interested in finding a traveling wave solution c(x, t) = f(x − vt) of Burgers’ equation

ct + ccx = Dcxx

which satisfies the boundary conditions c(−∞, t) = c− and c(∞, t) = c+. Writing z = x − vt, we
find that f(z) satisfies

(−v + f)f � = Df ��

which can be integrated to obtain
f2

−vf +
2

= Df � + A

for some constant A. Applying the boundary conditions, and assuming f �(z) → 0 as z → ±∞, we
find that

2c
−vc− + 2

− = A

2

−vc+ +
c+ = A

2

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions 8

-0.1

-0.05

0

0.05

0.1

-0.1 -0.05 0 0.05 0.1

a = 0.1

-0.2

-0.1

0

0.1

0.2

-0.2 -0.1 0 0.1 0.2

a = 0.2

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

a = 0.3

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

a = 1/3

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

a = 0.4

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

a = 0.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

a = 0.6

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

a = (
√

5 + 1)/2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

a = 0.7

-2

-1

0

1

2

-2 -1 0 1 2

a = 2−1/2

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

a = 0.8

-8

-6

-4

-2

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

a = 0.9

Figure 5: Plots of the PDF of the decaying random walk for twelve different values of a. For each
graph, 5 × 108 trials were performed. The color scheme goes from white (zero probability density),
through purple and blue, to black (high probability density).

� �

� �

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions 9

from which we find that the velocity must satisfy

2v(c+ − c) = (c 2+ − c 2)− −

v =
c+ + c−

.
2

From this, we find that
A = −

c+c−
2

and hence f must satisfy
(c+c−)f − f2 + 2Df � = c+c−.

We can now apply separation of variables to obtain

2D df
= dz

f2 �− (c+ + c−) + c+c− �
2D df

= dz � �
(f − c+)(f − c−�)

2D df df df
c− − c+

−
f − c+

−
c− − f

= z + k

2D
(− log(f − c+) + log(c− − f)) = z + k.

c− − c+

The variable k corresponds to a translation and does not affect the form of the function; it is
convenient to set k = 0. Then we find

cc− − f −−c+
= e 2D z

f − c+

c− − f = fe
c−

2

−
D

c+ z − c+e
c−

2

−
D

c+ z

and hence

c−−c+ z

f(z) =
c− + c+

c

e
−−c

2

+

D

z1 + e 2D � c �

=
c− + c+ +

c− − c+ 1 − e
−
2

−
D

c+ z

c2 2 1 + e
−
2

−
D

c+ z

=
c− + c+ +

c− − c+ tanh
c+ − c−

z .
2 2 4D

4 Discrete versus continuous models with nonlinear drift

Appendices B and C provide C++ codes to simulate the nonlinear drift problem for models A and
B respectively. These codes follow an approach very similar to that stated in the problem. The
largest difference is in the application of the boundary conditions. We assume that the density of
particles to the left of the simulation has a constant value of ρmax/4. If we take an interval of finite
length λ then the number of particles in this region should follow a Poisson distribution with mean
ρmaxλ/4. Similarly, to the right of the simulation, the density is assumed to have constant value of

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions 10

3ρmax/4, and the number of particles in an interval of length λ follows a Poisson distribution with
mean 3ρmaxλ/4.

For model A, our steps take the form u(ρ)τ ±
√

2Dτ , and for the parameters in this question,
the diffusive term is significantly larger than the drift. A hypothetical particle to the left of the
simulation region could enter the simulation region if it was in the interval −L −

√
2Dτ − u(ρ)τ <

x < −L, and if it took a step to the right. Since the chance of stepping right is exactly 1/2, it was
chosen to introduce particles according to a Poisson process with mean

ρmax 1 �
u(ρmax/4)τ +

√
2Dτ

�

4
×

2
×

into the interval −L < x < −L +
√

2Dτ + u(ρmax/4). A similar analysis shows that at the right
edge, particles need to be introduced at a rate of

3ρmax 1 � �

4
×

2
×

√
2Dτ − u(3ρmax/4)τ

into the interval L −
√

2Dτ + u(3ρmax/4) < x < L. For model B, assuming that the ρ is roughly
constant near the boundary, and thus ρx is roughly zero, particles take steps of size u(ρ)τ . Thus we
need to introduce no particles at the right boundary, and particles at a rate of u(ρmax/4)τρmax/4
at the left boundary.

When calculating the estimates of ρ and ρx at a point p in the interval, we make use of the
prescription given in the question. ρ is calculated by looking at dividing the number of particles in
the range p − l < x < p + l by 2l. ρx is calculated by finding the difference between the number of
particles in the regions p − l < x < p and p < x < p + l and dividing by l2 . If any of these counting
regions overlap with the boundary, say by an amount δ, then we make an additional contribution
to the density of ρδ.

Figures 6 and 7 show simulation output for the two models. In both cases, we see a good
agreement with the predicted result, although there are some discrepancies. After many timesteps,
particularly for model A, there is a tendency for the standing wave to drift to the right. A more
careful treatment of the boundary conditions may solve this.

Model B works surprisingly well. The presence of the ρx/ρ term causes the particles to dis­
tribute themselves very evenly over the simulation region, meaning that smooth density plots are
possible even over a short number of iterations. Unfortunately, the simple boundary condition for
introduction of particles at the left side appears not to be sufficient. If the density close to the
left simulation edge grows above ρmax/4, then the particles will not move away from the edge fast
enough to balance the rate of particle introduction, causing some degree of positive feedback. This
could be fixed by making the particle introduction rate dependent on the density of particles close
to the left edge.

To investigate these models further, a more advanced C++ code was written which can efficiently
handle much larger numbers of particles, which is given in appendix D. Rather than having a single
array for the walker positions, walkers are binned depending on their x position. In order to
calculate the estimates for ρ over an interval, it is only necessary to scan the particles in the bins
which overlap the interval. Furthermore, if a bin lies wholly within the interval, one just needs to
add the total number of particles in that bin to the calculation of ρ. These speedups effectively
reduce the computations of ρ at each step from an O(N2) calculation to an O(N) calculation,
allowing for many thousands of particles to be simulated.

The simulation results show some interesting behaviour. While the predicted curves frequently
follow the hyperbolic tangent form in accordance with the answer, we also see transients in the

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions 11

20

30

40

50

60

70

80

-4 -3 -2 -1 0 1 2 3 4

ρ

x

Simulation
Theory

Figure 6: Simulation output for model A of the nonlinear drift problem, compared to the theoretical
curve. The simulation results are time-averaged from the 100th iteration to the 5100th iteration.

density profile forming at the top of the standing wave. These tend to grow and then dissipate; an
example is shown in figure 8.

A C++ code for calculating the decaying random walk

This code simulates 105 walkers from the decaying PDF. The code receives the value of a as the
first input from the command line, and calculates the number of steps that must be computed in
order for the final step to be of size 10−5 . The code prints a list of X� points to the standard ∞
output.

#include <cstdio>
#include <iostream>
#include <cmath>
using namespace std;

const int trials=100000;

const float tol=0.00001;

int main (int argc, char ∗ argv[]) {
float a=atof(argv[1]),x,y,s;int i,j,k,r;

k=int (log(tol)/log(a)+1);

for(i=0;i <trials;i++) {

x=y=0;s=a;

for (j=0;j <k;j++) {

r=rand()%4;

if (r >1) x+=r==2?−s:s;
else y+=r ==0?−s:s;

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions 12

20

30

40

50

60

70

80

-4 -3 -2 -1 0 1 2 3 4

ρ

x

Simulation
Theory

Figure 7: Simulation output for model B of the nonlinear drift problem, compared to the theoretical
curve. The simulation results are time-averaged from the 100th iteration to the 400th iteration.

s∗=a;
}
cout << i << " " << x << " " << y << endl;

}
}

B Simple C++ code for simulating model A

#include <string>
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;

const int iter=5100; //Total number of iterations
const float dx=0.2; //Width for calculating local density
const float rhomax=100; //Value of rho max
const float lrho=25; //Value of rho for x<−4
const float rrho=75; //Value of rho for x>4
const float mx=4; //Half−width of simulation region
const float udt=0.01; //u max∗dt;
const float ddt=sqrt (0.01∗2/4); //sqrt(2∗D∗dt);
const int blocks=40; //Number of blocks to save out

const float pi=3.1415926535897932384626433832795;

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions 13

500

1000

1500

2000

2500

3000

3500

-4 -3 -2 -1 0 1 2 3 4

ρ

x

Iterations 1000 to 1019
Iterations 1200 to 1219
Iterations 1400 to 1419

Figure 8: A transient in the density profile, occurring in a much larger version of the simulation.
At approximately 1000 iterations a large peak is seen at the top of the standing wave but this
dissipates as the simulation progresses.

const int lwalk=int(mx ∗lrho); //Total initial walkers on LHS
const int twalk=int(mx ∗(lrho+rrho)); //Total initial walkers
const float lspeed=udt ∗(1−lrho/rhomax)+ddt;
const float rspeed=ddt −udt∗(1−rrho/rhomax);
const float lrate =0.5∗lspeed∗lrho; //L. walker intro rate
const float rrate =0.5∗rspeed∗rrho; //R. walker intro rate
const int mem=twalk ∗2; //Total memory
const float isp=float(blocks)/(2∗mx); //Inverse block spacing

inline float rnd() {return (float(rand())+0.5)/ RAND MAX;}
inline int poisson(float l) {

if (l >20) {
int r=int(sqrt (−2∗log(rnd())∗l)∗cos(2∗pi∗rnd())+0.5+l);
return r >0?r:0;

} else {
double a=rnd ()∗exp(l)−1,b=1;int r=0;

while(a >0) {a−=b∗=l/++r;}

return r;

}
}

int main() {
int a=0,i,j=0,t;float w[mem],v[mem],as[blocks],r,x;
while(j ++<lwalk) w[a++]=−mx∗rnd();
while(j ++<twalk) w[a++]=mx∗rnd();

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions 14

for(i=0;i <blocks;i++) as[i]=0;

for(t=0;t <iter;t++) {

for(i=0;i <a;i++) {
j=int((w[i]+mx)∗isp);
if (j >=0&&j<blocks&&t>100) as[j]++;
r=w[i]<dx−mx?lrho∗(dx−mx−w[i]):0;
r+=w[i]>mx−dx?rrho∗(w[i]−mx+dx):0;
for(j=0;j <a;j++) {

if (abs(w[i]−w[j])<dx) r++;
}
r/=2∗dx;
v[i]=udt∗(1−r/rhomax)+(rand()%2==1?ddt:−ddt);

}
i=0;

while(i <a) {

if (abs(w[i]+=v[i])>mx) {
v[i]=v[a];
w[i]=w[−−a];

}
else i++;

}
j=poisson(lrate);

for(i=0;i <j;i++) w[a++]=lspeed∗rnd()−mx;

j=poisson(rrate);

for(i=0;i <j;i++) w[a++]=mx−rspeed∗rnd();

}
for(i=0;i <blocks;i++) {

r=(float(i)+0.5)/isp −mx;

cout << r << " "

<< float(as[i])∗blocks/2/mx/(iter−100) << endl;
}

}

C Simple C++ code for simulating model B

#include <string>
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;

const int iter=400; //Total number of iterations
const float dx=0.2; //Width for calculating local density
const float rhomax=100; //Value of rho max
const float lrho=25; //Value of rho for x<−4
const float rrho=75; //Value of rho for x>4
const float mx=4; //Half−width of simulation region

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions 15

const float udt=0.01; //u max∗dt;

const float ddt=0.0025; //D ∗dt;

const int blocks=40; //Number of blocks to save out

const float pi=3.1415926535897932384626433832795;
const int lwalk=int(mx ∗lrho); //Total initial walkers on LHS
const int twalk=int(mx ∗(lrho+rrho)); //Total initial walkers
const float lspeed=udt ∗(1−lrho/rhomax);
const float lrate=lspeed ∗lrho; //L. walker intro rate
const int mem=twalk ∗2; //Total memory
const float isp=float(blocks)/mx ∗0.5; //Inverse block spacing

inline float rnd() {return (float(rand())+0.5)/ RAND MAX;}
inline int poisson(float l) {

if (l >20) {
int r=int(sqrt (−2∗log(rnd())∗l)∗cos(2∗pi∗rnd())+0.5+l);
return r >0?r:0;

} else {
double a=rnd ()∗exp(l)−1,b=1;int r=0;

while(a >0) {a−=b∗=l/++r;}

return r;

}
}

int main() {
int a=0,i,j=0,t;float w[mem],v[mem],as[blocks],r,s,x;
while(j ++<lwalk) w[a++]=−mx∗rnd();
while(j ++<twalk) w[a++]=mx∗rnd();
for(i=0;i <blocks;i++) as[i]=0;
for(t=0;t <iter;t++) {

for(i=0;i <a;i++) {
j=int((w[i]+mx)∗isp);
if (j >=0&&j<blocks&&t>100) as[j]++;
s=r=w[i]<dx−mx?lrho∗(dx−mx−w[i]):0;
r+=w[i]>mx−dx?rrho∗(w[i]−mx+dx):0;
for(j=0;j <a;j++) {

x=w[j]−w[i];
if (x >−dx) {

if (x <dx) {
r++;if (x <0) s++;

}
}

}
s=(r−2∗s)/(dx∗dx);

r/=2∗dx;

v[i]=udt∗(1−r/rhomax)−ddt∗s/r;

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions 16

}
i=0;

while(i <a) {

if (abs(w[i]+=v[i])>mx) {
v[i]=v[a];
w[i]=w[−−a];

}
else i++;

}
j=poisson(lrate);

for(i=0;i <j;i++) w[a++]=lspeed∗rnd()−mx;

}
for(i=0;i <blocks;i++) {

r=(float(i)+0.5)/isp −mx;

cout << r << " "

<< float(as[i])∗blocks/2/mx/(iter−100) << endl;
}

}

D Advanced C++ code for simulating the nonlinear drift model

#include <string>
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;

const int iter=20000; //Total number of iterations
const int bl=3200; //Number of memory blocks
const float dx=0.1; //Width for calculating local density
const float rhomax=40000; //Value of rho max
const float lrho=10000; //Value of rho for x<−4
const float rrho=30000; //Value of rho for x>4
const float mx=4; //Half−width of simulation region
const float udt=0.01; //u max∗dt;
const float ddt=0.05; //D∗dt;
const int smooth=40; //Smoothing factor

const float pi=3.1415926535897932384626433832795;
const int lwalk=int(mx ∗lrho); //Total initial walkers on LHS
const int twalk=int(mx ∗(lrho+rrho)); //Total initial walkers
const float ibs=bl/mx/2; //Inverse block spacing
const float lspeed=udt ∗(1−lrho/rhomax)+ddt;
const float rspeed=ddt −udt∗(1−rrho/rhomax);
const float lrate =0.5∗lspeed∗lrho; //L. walker intro rate
const float rrate =0.5∗rspeed∗rrho; //R. walker intro rate
const int res=bl/smooth; //Number of data points to save

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions 17

const int mem=int(rhomax ∗2∗2∗mx/float(bl)); //Memory estimate
float w[bl][mem]; //Walker positions
float v[bl][mem]; //Walker velocities
int a[bl]; //Tally for each memory block

inline int b(float x) {return int((mx+x)∗ibs+10)−10;}
inline void put(float x) {int i=b(x);

if(i <0 | |i>=bl) {cout << "∗∗∗" << i << " " << x << endl;return ;}
w[i][a[i]++]=x;

}

inline float rnd() {return (float(rand())+0.5)/ RAND MAX;}
void blocks() {

for(int i=0;i <bl;i++) cout << a[i] << " ";
cout << endl;

}
inline int poisson(float l) {

if (l >25) {
int r=int(sqrt (−2∗log(rnd())∗l)∗cos(2∗pi∗rnd())+0.5+l);
return r >0?r:0;

} else {

double a=rnd ()∗exp(l)−1,b=1;int r=0;

while(a >0) {a−=b∗=l/++r;}

return r;

}
}

inline float rho(float x) {
float lx=x −dx,rx=x+dx,s;
int l=b(lx),r=b(rx),m;
if (l==r) {

s=0;for(m=0;m <a[l];m++) {
if (w[l][m]>lx&&w[l][m]<rx) s+=1;
return s /(2∗dx);

}

}

if (l <0) {l=0;s=lrho∗(−mx−lx);}
else {

s=0;for(m=0;m <a[l];m++) if(w[l][m]>lx) s+=1;l++;
}
if (r >=bl) {r=bl−1;s+=rrho∗(rx−mx);}
else {

for(m=0;m <a[r];m++) if(w[r][m]<rx) s+=1;r−−;
}
while (l <r) s+=float(a[l++]);

return s /(2∗dx);

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 3 Solutions 18

}

int main() {
int ∗as[iter];
int i,j=0,k,t;float r,s,x;for (i=0;i <bl;i++) a[i]=0;
while(j ++<lwalk) put(−mx∗rnd());
while(j ++<twalk) put(mx∗rnd());
for(t=0;t <iter;t++) {

as[t]=new int[res];
for(i=0;i <res;i++) as[t][i]=0;
for(i=0;i <bl;i++) {

as[t][i/smooth]+=a[i];
for(j=0;j <a[i];j++) v[i][j]=udt∗(1−rho(w[i][j])

/rhomax)+(rand()%2==1?ddt:−ddt);
}
for(i=0;i <bl;i++) {

j=0;

while(j <a[i]) {

x=w[i][j]+v[i][j];
if ((k=b(x))==i) w[i][j++]=x;
else {

w[i][j]=w[i][−−a[i]];
v[i][j]=v[i][a[i]];
if(k >=0&&k<bl) {

w[k][a[k]]=x;

v[k][a[k]++]=0;

}
}

}
}
j=poisson(lrate);k=poisson(rrate);
for(i=0;i <j;i++) put(lspeed∗rnd()−mx);
for(i=0;i <k;i++) put(mx−rspeed∗rnd());

}
for(i=0;i <res;i++) {

cout << mx∗(2∗(float(i)+0.5)/res −1);
for(t=0;t <iter;t++) cout << " " << as[t][i];
cout << endl;

}
}

