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18.366 Random Walks and Diffusion, Spring 2005, M. Z. Bazant. 

Problem Set 4 

Due at lecture on Th May 5. 

1.	 Linear Polymer Structure. Consider a chain of N monomers, each of length a, in d = 3 
dimensions. Let RN be the end­to­end distance, with PDF, P (R,N). In the absence of correla­
tions, we have the usual scaling, RN = �R2 

N � = a
√

N . Now suppose that monomers also tend 

to be aligned linearly at each link, with an energy, ε(θ) = −α Δ�xn Δxn+1 = −αa2 cos θ, for · 
1 ≤ n ≤ N − 1, which yields a PDF, p(θ) ∝ e−ε(θ)/kT , for each angle, θ. 

(a) Normalize p(θ) and calculate the mean total energy, �EN � = (N − 1)αa2ρ, where ρ(T ) = 
��Δ�x Δxn+1�/a2, is the correlation coefficient between ‘steps’ (monomer vectors). n · 

(b) Show that the same scaling holds, 

RN ∼ aef f (T )
√

N 

as N → ∞, with an effective monomer size, aef f (T ). Sketch aef f (T ), and discuss its asymp­
totics for T → 0,∞. 

2.	 Polymer Surface Adsorption. Consider a long polymer chain in solution attached (’ad­
sorbed”) onto a flat surface at a discrete set of points, �rn = (xn, yn, z = 0). Model the polymer as 
a continuous stochastic process in the half­space, (x, y, z > 0), with zero drift and “diffusivity”, 
D = a2/2, where a is the monomer length and “time” is measured in monomers. Take discreteness 
into account by starting the stochastic process at �rn + aẑ = (xn, yn, a) before it returns for the 
next adsorption at �rn+1. 

(a) Calculate the PDF for the displacement between successive adsorption sites, proportional to 
the eventual hitting probability density on the surface. [Hint: use the electrostatic analogy 
with an “image charge”.] 

(b) Calculate the PDF of the position �rNs of the Nsth adsorption site (a Lévy flight). 

(c)	 (Extra credit) For a polymer of length N , show that the expected number of adsorption sites 
�Ns(N)� scales like 

√
N , which is also the scaling of the surface displacement, �rNs(N ), and 

the bulk radius of the polymer. 

3.	 Solution to the Telegrapher’s Equation. Let c(x, t) be the solution to1 

ctt + rct = v 2 cxx 

for −∞ < x < ∞, t > 0 subject to the initial conditions, c(x, 0) = δ(x) and ct(x, 0) = 0. 

(a) Show that the Fourier2­Laplace3 transform of the solution is 

ĉ̃(k, s) = 
s + r 

s(s + r) + v2k2 

1As explained in class, this continuum problem describes the long­time PDF of the position , pn(m) = σc(mσ, nτ ), of 
a persistent random walk on a lattice of spacing σ with correlation coefficient, ρ, between successive steps of time interval 
τ , in the limit ρ → 1 where v = σ/τ , r = 1/τc, τc = τ nc, nc = −2/ log ρ. 

2f̂(k) = 
∞ 

e−ikxf (x)dx 
3 ∞
g̃(s) = 

� −∞ 

e−st g(t)dt. 
0 
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(b) Use part (a) to determine the variance of the position, 

�x 2(t)� = 
∞ 

x 2 c(x, t)dx 
−∞ 

Show that this agrees with the scaling function for the persistent walk obtained in class (for 
the ballistic to diffusive transition in the limit ρ → 1). 

(c) By comparing (a) with the Fourier­Laplace transform of the Diffusion Equation, ct = Dcxx, 
show that the Telegrapher’s Equation reduces to the Diffusion Equation after long times, 
t � τc (or s � r), where D = v2/r. (This essentially proves the Central Limit Theorem for 
the persistent random walk.) 

(d) (Extra credit) Invert the transforms in (a) to obtain the exact solution 4 , 

e−rt/2 � 
r 

c(x, t) = δ(x − vt) + δ(x + vt) + I0(z) + 
I1(z) 

H(vt − x )
2	 4v 2z 

| |

where 
2r

√
v2t2 − x

z = 
2v 

2which smoothly interpolates between the Green functions for the Wave Equation, ctt = v cxx, 
and the diffusion equation, ct = Dcxx, respectively5 

4.	 Inelastic Diffusion. Consider a ball bouncing on a rough surface. Each time the ball hits the 
surface it is scattered in a random direction. For any real surface, the collision is inelastic, i.e. the 
ball only retains a fraction 0 < r < 1 of its kinetic energy (r = “the coefficient of restitution”). 
Therefore, the ball’s expected height and horizontal displacement are reduced by factors of r and √

r, respectively, with each successive bounce. 

A reasonable model for this situation might be an ‘inelastic random walk’, with exponentially 
decreasing step lengths6 . Let ΔXn be IID random variables with zero mean and cumulants 
cl < ∞ (l ≥ 2), which represent the typical displacement after an elastic bounce. The inelastic 
nature of the collisions is reflected in a rescaling of this distribution with each step. Specifically, 
our model is the random walk 

N

XN = a nΔXn 
n=1 

with non­identical steps, where 0 < a < 1 is a constant (a = 
√

r). Do the analysis below for the 
case of one dimension (which would model transverse diffusion on a surface with random parallel 
grooves), but keep in mind that your results are easily generalized to higher dimensions. 

(a) Express the PDF, PN (x), of XN in terms of the PDF, p(x), of ΔXn. 
(b) Find the cumulants CN,l of XN (in terms of cl). 
(c) Let Cl = limN →∞ CN,l and a = 1 − � (� > 0). Show that C2m/Cm = O(�m−1) as � 0.2 → 

1/2(d) Let φ(ζ, �) = C1/2
P∞(ζC ), and show that “the Central Limit Theorem holds” as a 1.2 2 →

In other words, show that

φ(ζ, �) → φo(ζ) = e−ζ2 /2/

√
2π


as � 0 with ζ fixed7 This, of course, agrees with the limit of a simple random walk (a = 1). → � π4You may wish to use the following identities for modified Bessel functions: I0(z) = cosh(z cos θ)dθ, I1(z) = I0(z).
0 

5The former is obvious (delta function terms), and you may expand the solution in the limit rt � 1 and x = O(
√

t) to 
obtain the latter (from the Bessel function terms), although it is also implied by (c). 

6See Lecture 14, 18.366 notes (2003). 
7Note, however, that the CLT does not applyfor any fixed � < 0 as N → ∞. For a dramatic example of the violation 

of the CLT, where ΔXn is a Bernoulli random variable, see Lecture 15, 18.366 notes (2003). 


