
Solutions to Problem Set 4

Chris H. Rycroft∗

November 10, 2006

1 First passage for biased diffusion

1.1 The first passage time to the origin

The PDF ρ(x, t) of a continuous diffusion process with drift velocity v and diffusivity D satisfies a
Fokker-Planck equation

ρt + vρx = Dρxx.

For this problem, we are interested in solving in the domain x > 0. Walkers which reach x = 0
achieve first passage and are removed, so we make use of the boundary condition ρ(0, t) = 0. Since
the walker starts at x = x0, our initial condition is ρ(x, 0) = δ(x − x0). Without the boundary, we
would just get a solution of the form

1 √
4πDt

e−(x−x0−vt)2/4Dt .

For this problem, we make use of the image method, introducing another term starting at x = −x0

with magnitude A. Our PDF is therefore

ρ(x, t) =
1 �

e−(x−x0−vt)2/4Dt + Ae−(x+x0−vt)2/4Dt
�

.√
4πDt

This trivially satisfies the Fokker-Planck equation, and we wish to choose A so that our boundary
condition is satisfied. Setting x = 0 gives

ρ(0, t) =
1 �

e(−x0−vt)2/4Dt + Ae−(x0−vt)2/4Dt
�

√
4πDt
2(x +v2t2)/4Dt � �

=
e 0

√
4πDt

e x0v/2D + Ae−x0v/2D .

If A = −ex0v/D then our boundary condition is satisfied, and hence

√
4
1

πDt

�
e−(x−x0−vt)2/4Dt − e−x0v/De−(x+x0−vt)2/4Dt

�
ρ(x, t) = .

∗Solutions to problems 1 and 3 based on sections of A Guide to-First Passage Processes by Sidney Redner (2001).

1

�
| �� �

�

�

�

�

� �

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 4 Solutions 2

By evaluating the probability current at x = 0, we find that the first passage probability density is
given by

f(t) = −vρ + Dρx x=0

=
D x − x0 − vt

e−(x−x0−vt)2/4Dt +
x + x0 − vt

e x0v/De−(x+x0−vt)2/4Dt �� √
4πDt

−
2Dt 2Dt x=0

=
1 � x0

e−(x0+vt)2/4Dt +
x0 x0v/D (x0+vt)2/4Dt

�
e e

4πt 2DT 2DT

=
x0

e−(x0+vt)2/4Dt .√
4πDt3

1.2 The survival probability

By integrating the f(t), we find that the survival probability is

t

S(t) = 1 − f(q) dq
0

t

= 1 − e−vx0/2D �
x0

e−x2
0/4Dqe−v2q/4D dq.

0 4πDq3

Using the substitution u2 = x2/4Dt and the Péclet number Pe = vx0/2D, we find

2 2
S(t) = 1 − √2

π
e−Pe

x/

∞

√
4Dt

e−u −Pe2/4u du

1
� �

x0 Pe
√

4Dt
��

= 1 −
2

1 − erf √
4Dt

+
2 x0

e−2Pe
� �

x0 Pe
√

4Dt
��

+
2

1 − erf √
4Dt

−
2 x0

.

1
e−Pe−|Pe|

�

2 − erfc

�
|Pe|

√
4Dt

��

.∼ 1 −
2 2 x0

As t →∞, we get two different behaviors for S(t), depending on the sign of v:

1 − e−2Pe for Pe > 0
S(t) ∼

Pe
√x0

πDt
e−Pe2Dt/x2

0 for Pe ≤ 0

1 − e−vx0/D for v > 0
4D 2t/4D∼

e−v for v ≤ 0.
πv2t

From these expressions, we see that if v > 0 then there is a probability of e−vx0/D of eventual first
passage.

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 4 Solutions 3

1.3 Minimum first passage time

Let the random variables for the first passage times be T1, T2, . . . , TN . Since the walkers are inde­
pendent, we know that

P (min{T1, T2, . . . , TN } > t) = P (T1 > t, T2 > t, . . . , TN > t)
= P (T1 > t)P (T2 > t) . . . P (TN > t)
= S(t)N

and hence the PDF of the minimum first passage time is given by

pn(t) = −
d

S(t)N = f(t)NS(t)N−1

dt

where f(t) and S(t) are explicitly given in the previous sections.

2 First passage for anomalous walks

2.1 Unbiased Cauchy walk

Appendix A provides a simple C++ code to simulate first passage times for the Cauchy walk. For a
large number of trials, it was found that the standard C++ math rand() function was inadequate,
and that slight biases in the probabilities around n = 30 could be seen. A second code, listed in
appendix B, was therefore written, making use of the more advanced random number generation
routines found in the GNU Scientific Library (GSL) [1].

The GSL code was run with 2 × 1010 trials for the case of d = 0.0. Walks that did not achieve
first passage in 105 steps were prematurely terminated. Figure 1 shows the computed values of f(n)
for low values of n, while figure 2 shows a logarithmic plot highlighting the asymptotic behavior. For
large n, the curve becomes almost linear, and by applying regression over the range 103 ≤ n ≤ 105

we find that f(n) ∝ n−1.50061, which appears to match the theoretical result of f(n) ∝ n−3/2 for
the Bernoulli walk.

Figure 3 shows a plot of the survival probability S(n). Again, this curve appears to become
linear for large n, and by applying regression we find S(n) ∝ n−0.500147 . Since we have a negative
exponent, we see that S(n) → 0 as n →∞, and thus our expected probability of return is 1.

2.2 Biased Cauchy walk

The GSL code was also run for d = 1.0 and d = −1.0. The same number of trials were used for
d = −1.0 as for the unbiased case, but 2 × 108 trials were used for d = 1.0, since many of these
walks took a great number of steps to complete, thus creating a larger computational overhead.
The computed f(n) for low values of n is shown in figure 1, while a log plot showing the asymptotic
behavior is shown in figure 2. We see that for large n, the curves in this figure become almost
linear. Applying linear regression over the range 103 ≤ n ≤ 105 shows that f(n) ∝ n−1.75027 for
d = −1.0, and f(n) ∝ n−1.25015 for d = 1.0.

The survival probability function S(n) for these cases is shown in figure 3. Again, these curves
appear linear as n increases, and by applying linear regression we find that S(n) ∝ n−0.750051 for
d = −1.0 and S(n) ∝ n−0.250044 for d = 1.0. Thus we expect that the probability of return is
always 1, even for the case of positive drift, although some of these walks may take a very long
time to return. Nevertheless, this fits with our intuition, since Cauchy walkers are capable of taking
extremely large steps, on a scale larger than the drift.

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 4 Solutions 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1 2 3 4 5 6 7 8 9 10

f
(n

)

n

d = −1.0
d = 0.0
d = 1.0

Figure 1: Plots of the first passage probability functions f(n) for the unbiased and biased Cauchy
walks.

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000 100000

f
(n

)

n

d = −1.0
d = 0.0
d = 1.0

Figure 2: Log plots of the first passage probability functions f(n) for the unbiased and biased
Cauchy walks.

� = �

3

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 4 Solutions 5

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000 100000

S
(n

)

n

d = −1.0
d = 0.0
d = 1.0

Figure 3: Log plots of the survival probability functions S(n) for the unbiased and biased Cauchy
walks.

First passage to a sphere

To calculate the probability of first passage to the sphere, we make use of the electrostatic analogy.
We consider the corresponding problem of a point charge of magnitude q = 1/4πR2D located at
a distance r0 from the sphere, with the sphere’s surface is kept at zero potential. The probability
of absorption at a point on the sphere’s surface will be given by the magnitude of the electric field
there. Let �r0 be the the position of the walker, and by symmetry, consider pointing this in the
positive z-direction. In the absence of the sphere, the electric potential is given by

Φ(�r) =
q

,
|�r − �r0|

which can be rewritten in terms of spherical coordinates (r, θ, φ) as

Φ(�r) = �
q

.
r2 sin2 θ + (r0 − r cos θ)2

To solve for the electric potential in the presence of the sphere, we make use of the image method,
introducing a charge of magnitude v at a location (x, y, z) = (0, 0, s), to give a solution of the form

Φ(�r) = �
q

+ �
v

.
r2 sin2 θ − (r0 − r cos θ)2 r2 sin2 θ − (r cos θ − s)2

In order to set the electric potential to zero on the sphere at r = R, we must have
q v

R2 sin2 θ − (r0 − R cos θ)2
−

R2 sin2 θ − (R cos θ − s)2

q 2(R2 sin2 θ − (R cos θ − s)2) = v 2(R2 sin2 θ − (r0 − R cos θ)2)
q 2(R2 − s 2 − 2Rs cos θ) = v 2(R2 − r0

2 − 2Rr0 cos θ).

� �

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 4 Solutions 6

To be valid for all θ, we must have q2s = v2r0, and

q 2(R2 − s 2) = v 2(R2 − r0
2)

R
(R2 − s 2) = (R2 − r0

2) �s �
R2

(s − r0) s = 0.
r0

Thus s = R2/r0, which is inside of the sphere, since r0 > R. The magnitude of the charge is given
by

R2

v 2 r0 = q 2

r0

−qR
v = .

r0

Thus the electric potential is

Φ(�r) = �
q �

qR
.

R2r2 sin2 θ − (r0 − r cos θ)2
−

r0 r2 sin2 θ − (r cos θ −)2
r0

Taking the normal derivative and multiplying by −D, we find that the PDF of absorption at a
position (R, θ) on the sphere is

21 1 − R
r0

2

P (R, θ) = � .
4πRr �3/2

1 − 2R cos θ + R2

2

r0 r0

The ratio between the probability of hitting at the nearest point on the sphere and the farthest is

P (R, 0)
�

1 + 2R/r0 + R2/r0
2 �d/2 �

1 + R/r0
�d

= = .
P (R, π) 1 − 2R/r0 + R2/r2 1 − R/r00

4 The Ballot Problem

We define Pi and Qi be the partial scores for the two candidates after i votes have been counted,
and let Ri = Pi − Qi be the difference between the two. At each step, Ri can either increase or
decrease by one, and it is therefore a Bernoulli pathway on the integers, as discussed in lecture 14.

We know that Pp+q = p and Qp+q = q, so Rp+q = p − q. In terms of the quantities introduced
in lecture, we know that the number of possible ways to count the votes is therefore N(p − q, p + q),
and each of these paths is equally likely.

If the first candidate always has more votes than the second, we know that the Ri trace out a
non-returning path to (p−q, p+q), and as shown in the lecture there are (p−q)N(p−q, p+q)/(p+q) of
these. To obtain the probability, we just need to divide by the total number of paths, N(p−q, p+q),
to obtain (p − q)/(p + q).

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 4 Solutions 7

p q r P p q r P p q r P p q r P p q r P
1 0 0 1.0000 3 1 1 0.3000 4 1 1 0.4000 5 0 1 0.6667 5 1 4 0.0889
2 0 0 1.0000 3 1 2 0.1333 4 1 2 0.2381 5 0 2 0.4285 5 2 2 0.2302
2 0 1 0.3333 3 2 2 0.0762 4 1 3 0.1071 5 0 3 0.2500 5 2 3 0.1461
2 1 1 0.1667 4 0 0 1.0000 4 2 2 0.1571 5 0 4 0.1111 5 2 4 0.0693
3 0 0 1.0000 4 0 1 0.6000 4 2 3 0.0762 5 1 1 0.4761 5 3 3 0.1004
3 0 1 0.5000 4 0 2 0.3333 4 3 3 0.0457 5 1 2 0.3214 5 3 4 0.0508
3 0 2 0.2000 4 0 3 0.1428 5 0 0 1.0000 5 1 3 0.1944 5 4 4 0.0313

Table 1: Computed probabilities for the three-person ballot problem for p ≤ 5.

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5
q = 0 1.0000 0.7142 0.5000 0.3333 0.2000 0.0909
q = 1 0.7142 0.5357 0.3890 0.2667 0.1636 0.0758
q = 2 0.5000 0.3890 0.2937 0.2082 0.1313 0.0622
q = 3 0.3333 0.2667 0.2082 0.1543 0.1013 0.0495
q = 4 0.2000 0.1636 0.1313 0.1013 0.0712 0.0369
q = 5 0.0909 0.0758 0.0622 0.0495 0.0369 0.0231

Table 2: Computed probabilities for the three-person ballot problem for p = 6.

4.1 Simulating three candidates

Appendix C simulates the three-person voting process. All possible combinations of p, q, and r
votes less than or equal to 12 were tested, each with N = 109 trials. For an underlying process
with probability l of success, and N trials, we know that the observed number of successes will be
a binomial distribution with mean Nl and variance Nl(1 − l) < N/4. Thus the standard deviation
of our probability estimate is less than (

�
N/4)/N = 1/

√
4N ≈ 1.58 × 10−5 . Thus we expect our

probabilities to be correct to four decimal places. Tables 2, 3, 4, 5, and 6 show the computed
probabilities for p = 6, p = 7, p = 8, p = 9, and p = 10 respectively, and table 1 shows the
probabilities for p ≤ 5.

4.2 Analytical results for three walkers

Consider the case when r = 1. The total number of possible ways the votes can be counted is
(p + q + 1)N(p − q, p + q), since any counting process can be viewed as a counting process between
candidates A and B only, with C’s vote inserted at one of p + q + 1 located between the other votes.

We know that in order for A to always be ahead, he must receive the first two votes. Consider
any voting process between A and B where A is always ahead. If C’s vote is inserted before any
votes are counted, then C will take the lead and A will not always be ahead. If C’s vote is inserted
after one vote has been counted, then C will tie with A, and again the condition will be violated.
However, if C’s vote is inserted at any later point, then it will not violate the condition, since A
must have at least two votes by this stage. The total number of possible voting processes satisfying
the condition in therefore (p + q − 1)F (p − q, p + q), and hence the probability of the condition being
satisfied is

(p + q − 1)F (p − q, p + q)
=

(p + q − 1)(p − q)
.

(p + q + 1)N(p − q, p + q) (p + q + 1)(p + q)

For the case when r > 1 the reader should refer to references [2] and [3].

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 4 Solutions 8

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6
q = 0 1.0000 0.7500 0.5556 0.4000 0.2727 0.1667 0.0769
q = 1 0.7500 0.5835 0.4444 0.3272 0.2273 0.1411 0.0659
q = 2 0.5556 0.4444 0.3484 0.2631 0.1868 0.1179 0.0559
q = 3 0.4000 0.3272 0.2631 0.2047 0.1490 0.0964 0.0466
q = 4 0.2727 0.2273 0.1868 0.1490 0.1128 0.0755 0.0376
q = 5 0.1667 0.1411 0.1179 0.0964 0.0755 0.0539 0.0284
q = 6 0.0769 0.0659 0.0559 0.0466 0.0376 0.0284 0.0179

Table 3: Computed probabilities for the three-person ballot problem for p = 7.

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7
q = 0 1.0000 0.7778 0.6000 0.4544 0.3334 0.2309 0.1429 0.0667
q = 1 0.7778 0.6222 0.4906 0.3788 0.2824 0.1979 0.1238 0.0583
q = 2 0.6000 0.4906 0.3960 0.3120 0.2360 0.1680 0.1064 0.0507
q = 3 0.4544 0.3788 0.3120 0.2505 0.1936 0.1401 0.0902 0.0435
q = 4 0.3334 0.2824 0.2360 0.1936 0.1531 0.1135 0.0746 0.0367
q = 5 0.2309 0.1979 0.1680 0.1401 0.1135 0.0870 0.0591 0.0298
q = 6 0.1429 0.1238 0.1064 0.0902 0.0746 0.0591 0.0426 0.0227
q = 7 0.0667 0.0583 0.0507 0.0435 0.0367 0.0298 0.0227 0.0145

Table 4: Computed probabilities for the three-person ballot problem for p = 8.

A C++ codes for simulating the Cauchy first passage problem

This listing provides a simple C++ code for generating the distribution of first passage times for a
Cauchy walk. The code accepts two command line argumerts: the drift parameter d, and a random
seed. Once all walks have been simulated, the first passage probabilities for each number of walk
step are printed to the standard output. Walks which did not achieve first passage in n steps are
listed in the final line of the output.

#include <string>
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;

const double p=3.1415926535897932384626433832795;

const long n=10000; //Cutoff number of steps

const long w=10000000; //Number of walkers

double d=0; //Drift

inline int cauchy() {
static double x;x=1;

for(int i=0;i<n;i++) {

x+=d+tan(((double(rand())+0.5)/RAND MAX−0.5)∗p);
if (x<0) return i;

}
return n;

}

int main(int argc,char∗ argv[]) {
srand(atoi(argv[1]));

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 4 Solutions	 9

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8
q = 0 1.0000 0.8000 0.6362 0.5000 0.3849 0.2860 0.2000 0.1250 0.0588
q = 1 0.8000 0.6544 0.5303 0.4236 0.3301 0.2477 0.1750 0.1103 0.0523
q = 2 0.6362 0.5303 0.4379 0.3550 0.2801 0.2129 0.1521 0.0968 0.0462
q = 3 0.5000 0.4236 0.3550 0.2921 0.2343 0.1807 0.1307 0.0841 0.0406
q = 4 0.3849 0.3301 0.2801 0.2343 0.1914 0.1501 0.1103 0.0719 0.0351
q = 5 0.2860 0.2477 0.2129 0.1807 0.1501 0.1203 0.0902 0.0600 0.0298
q = 6 0.2000 0.1750 0.1521 0.1307 0.1103 0.0902 0.0698 0.0479 0.0244
q = 7 0.1250 0.1103 0.0968 0.0841 0.0719 0.0600 0.0479 0.0348 0.0187
q = 8 0.0588 0.0523 0.0462 0.0406 0.0351 0.0298 0.0244 0.0187 0.0120

Table 5: Computed probabilities for the three-person ballot problem for p = 9.

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9
q = 0 1.0000 0.8182 0.6667 0.5387 0.4294 0.3334 0.2500 0.1764 0.1111 0.0526
q = 1 0.8182 0.6818 0.5643 0.4625 0.3715 0.2916 0.2206 0.1569 0.0994 0.0474
q = 2 0.6667 0.5643 0.4746 0.3926 0.3196 0.2535 0.1935 0.1388 0.0886 0.0425
q = 3 0.5387 0.4625 0.3926 0.3297 0.2718 0.2182 0.1683 0.1217 0.0783 0.0378
q = 4 0.4294 0.3715 0.3196 0.2718 0.2271 0.1848 0.1442 0.1055 0.0685 0.0334
q = 5 0.3334 0.2916 0.2535 0.2182 0.1848 0.1525 0.1208 0.0897 0.0590 0.0291
q = 6 0.2500 0.2206 0.1935 0.1683 0.1442 0.1208 0.0976 0.0739 0.0495 0.0248
q = 7 0.1764 0.1569 0.1388 0.1217 0.1055 0.0897 0.0739 0.0576 0.0398 0.0205
q = 8 0.1111 0.0994 0.0886 0.0783 0.0685 0.0590 0.0495 0.0398 0.0291 0.0158
q = 9 0.0526 0.0474 0.0425 0.0378 0.0334 0.0291 0.0248 0.0205 0.0158 0.0101

Table 6: Computed probabilities for the three-person ballot problem for p = 10.

d=atof(argv[2]);

int	i,j,c,a[n+1];

for(i=0;i<=n;i++) a[i]=0;
for(j=0;j<w;j++) a[cauchy()]++;
for(i=0;i<=n;i++) {

cout	<< i << " " << a[i]
<< " " << double(a[i])/w << endl;

}
}

B	 C++/GSL code for simulating the Cauchy first passage prob­
lem

This code performs the same task as that in appendix A but makes use of random number gen­
erating routines in the GNU Scientific Library[1] (GSL), which provide much better sources of
randomness. The code accepts a single command line argument for the drift. The environment
variable GSL_RNG_TYPE chooses the random number routine to use (in this case, set to mrg), and
the environment variable GSL_RNG_SEED chooses a random seed.

#include <string>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <gsl/gsl rng.h>
using namespace std;

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 4 Solutions 10

const double p=3.1415926535897932384626433832795;

const long n=100000; //Cutoff number of steps

const long w=1000000; //Number of walkers

double d; //Drift

const gsl rng type ∗ T;

gsl rng ∗ r;

inline int cauchy() {
static double x;x=1;
for(int i=0;i<n;i++) {

x+=d+tan((gsl rng uniform(r)−0.5)∗p);
if (x<0) return i;

}
return n;

}

int main(int argc,char∗ argv[]) {
d=atof(argv[1]);
gsl rng env setup();
T=gsl rng default;
r=gsl rng alloc(T);
int i,j,c,a[n+1];
for(i=0;i<=n;i++) a[i]=0;
for(j=0;j<w;j++) a[cauchy()]++;
for(i=0;i<=n;i++) {

cout << i << " " << a[i]
<< " " << double(a[i])/w << endl;

}
gsl rng free(r);

}

C C++ code for simulating three-candidate vote counting

The code below simulates a three-person voting process. It accepts one integer command line
argument, which seeds the random number generator. Up to symmetry, all possible values of the
three vote totals below max are tested, and the computed probabilities are printed to the standard
output.

#include <string>
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;

const int trials=200000000; //Total number of trials

const int m=12; //Max value of p,q,r

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 4 Solutions	 11

//Returns a random integer between 0 and x−1
inline int randi(int x) {

int y=(RAND MAX/x)∗x,z;
do {z=rand();} while (z>=y);
return z%x;

}

//Simulates a voting process with p, q, and r votes

//and returns true if the first candidate is always

//ahead

bool walk(int p,int q,int r) {

int a,b,c,h;
a=b=c=0;
while(p>0 | |q>0 | |r>0) {

h=randi(p+q+r);

if(h<p) {a++;p−−;} else

{

if (h<p+q) {b++;q−−;if (b>=a) return false;}
else {c++;r−−;if (c>=a) return false;}

}

}

return true;

}

int main(int argc,char∗ argv[]) {
srand(atoi(argv[1])); //Seed random number generator
int i,j,k,l,s;
for(i=0;i<=m;i++) { //Loop over all possible triples

for(j=0;j<i;j++) {
for(k=j;k<i;k++) {

s=0;
for(l=0;l<trials;l++) {

if (walk(i,j,k)) s++;

}
cout	<< i << " " << j << " "

<< k << " " << s << " "
<< double(s)/trials << endl;

}
}

}
}

References

[1] http://www.gnu.org/software/gsl.

http://www.gnu.org/software/gsl

M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 4 Solutions 12

[2] Arumugam Muhundan, Ballot problem with two and three candidates, Master’s thesis, Florida
Atlantic University, 1990.

[3] Heinrich Niederhausen, The ballot problem with three candidates, European Journal of Combi­
natorics 4 (1983), 161–167.

