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1 First passage for biased diffusion 

1.1 The first passage time to the origin 

The PDF ρ(x, t) of a continuous diffusion process with drift velocity v and diffusivity D satisfies a 
Fokker-Planck equation 

ρt + vρx = Dρxx. 

For this problem, we are interested in solving in the domain x > 0. Walkers which reach x = 0 
achieve first passage and are removed, so we make use of the boundary condition ρ(0, t) = 0. Since 
the walker starts at x = x0, our initial condition is ρ(x, 0) = δ(x − x0). Without the boundary, we 
would just get a solution of the form 

1 √
4πDt 

e−(x−x0−vt)2/4Dt . 

For this problem, we make use of the image method, introducing another term starting at x = −x0 

with magnitude A. Our PDF is therefore 

ρ(x, t) = 
1 � 

e−(x−x0−vt)2/4Dt + Ae−(x+x0−vt)2/4Dt 
� 

.√
4πDt 

This trivially satisfies the Fokker-Planck equation, and we wish to choose A so that our boundary 
condition is satisfied. Setting x = 0 gives 

ρ(0, t) = 
1 � 

e(−x0−vt)2/4Dt + Ae−(x0−vt)2/4Dt 
� 

√
4πDt 
2(x +v2t2)/4Dt � � 

= 
e 0

√
4πDt 

e x0v/2D + Ae−x0v/2D . 

If A = −ex0v/D then our boundary condition is satisfied, and hence 

√
4
1 

πDt 

� 
e−(x−x0−vt)2/4Dt − e−x0v/De−(x+x0−vt)2/4Dt 

� 
ρ(x, t) = . 

∗Solutions to problems 1 and 3 based on sections of A Guide to-First Passage Processes by Sidney Redner (2001). 
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By evaluating the probability current at x = 0, we find that the first passage probability density is 
given by 

f(t) = −vρ + Dρx x=0 

= 
D x − x0 − vt 

e−(x−x0−vt)2/4Dt + 
x + x0 − vt 

e x0v/De−(x+x0−vt)2/4Dt �� √
4πDt 

− 
2Dt 2Dt x=0 

=
1 � x0 

e−(x0+vt)2/4Dt + 
x0 x0v/D (x0+vt)2/4Dt 

� 
e e

4πt 2DT 2DT 

= 
x0 

e−(x0+vt)2/4Dt .√
4πDt3 

1.2 The survival probability 

By integrating the f(t), we find that the survival probability is 

t 

S(t) = 1 − f(q) dq 
0 

t 

= 1 − e−vx0/2D � 
x0 

e−x2
0/4Dqe−v2q/4D dq. 

0 4πDq3 

Using the substitution u2 = x2/4Dt and the Péclet number Pe = vx0/2D, we find 

2 2 
S(t) = 1 − √2 

π
e−Pe 

x/

∞

√
4Dt 

e−u −Pe2/4u du 

1 
� � 

x0 Pe 
√

4Dt 
�� 

= 1 − 
2

1 − erf √
4Dt 

+
2 x0 

e−2Pe 
� � 

x0 Pe 
√

4Dt 
�� 

+
2 

1 − erf √
4Dt 

− 
2 x0 

. 

1 
e−Pe−|Pe| 

� 

2 − erfc 

� 
|Pe|

√
4Dt 

�� 

.∼ 1 − 
2 2 x0 

As t →∞, we get two different behaviors for S(t), depending on the sign of v: 

1 − e−2Pe for Pe > 0 
S(t) ∼ 

Pe
√x0 

πDt 
e−Pe2Dt/x2

0 for Pe ≤ 0 

1 − e−vx0/D for v > 0 
4D 2t/4D∼ 

e−v for v ≤ 0.
πv2t 

From these expressions, we see that if v > 0 then there is a probability of e−vx0/D of eventual first 
passage. 
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1.3 Minimum first passage time 

Let the random variables for the first passage times be T1, T2, . . . , TN . Since the walkers are inde­
pendent, we know that 

P (min{T1, T2, . . . , TN } > t) = P (T1 > t, T2 > t, . . . , TN > t) 
= P (T1 > t)P (T2 > t) . . . P (TN > t) 
= S(t)N 

and hence the PDF of the minimum first passage time is given by 

pn(t) = − 
d

S(t)N = f(t)NS(t)N−1 

dt 

where f(t) and S(t) are explicitly given in the previous sections. 

2 First passage for anomalous walks 

2.1 Unbiased Cauchy walk 

Appendix A provides a simple C++ code to simulate first passage times for the Cauchy walk. For a 
large number of trials, it was found that the standard C++ math rand() function was inadequate, 
and that slight biases in the probabilities around n = 30 could be seen. A second code, listed in 
appendix B, was therefore written, making use of the more advanced random number generation 
routines found in the GNU Scientific Library (GSL) [1]. 

The GSL code was run with 2 × 1010 trials for the case of d = 0.0. Walks that did not achieve 
first passage in 105 steps were prematurely terminated. Figure 1 shows the computed values of f(n) 
for low values of n, while figure 2 shows a logarithmic plot highlighting the asymptotic behavior. For 
large n, the curve becomes almost linear, and by applying regression over the range 103 ≤ n ≤ 105 

we find that f(n) ∝ n−1.50061, which appears to match the theoretical result of f(n) ∝ n−3/2 for 
the Bernoulli walk. 

Figure 3 shows a plot of the survival probability S(n). Again, this curve appears to become 
linear for large n, and by applying regression we find S(n) ∝ n−0.500147 . Since we have a negative 
exponent, we see that S(n) → 0 as n →∞, and thus our expected probability of return is 1. 

2.2 Biased Cauchy walk 

The GSL code was also run for d = 1.0 and d = −1.0. The same number of trials were used for 
d = −1.0 as for the unbiased case, but 2 × 108 trials were used for d = 1.0, since many of these 
walks took a great number of steps to complete, thus creating a larger computational overhead. 
The computed f(n) for low values of n is shown in figure 1, while a log plot showing the asymptotic 
behavior is shown in figure 2. We see that for large n, the curves in this figure become almost 
linear. Applying linear regression over the range 103 ≤ n ≤ 105 shows that f(n) ∝ n−1.75027 for 
d = −1.0, and f(n) ∝ n−1.25015 for d = 1.0. 

The survival probability function S(n) for these cases is shown in figure 3. Again, these curves 
appear linear as n increases, and by applying linear regression we find that S(n) ∝ n−0.750051 for 
d = −1.0 and S(n) ∝ n−0.250044 for d = 1.0. Thus we expect that the probability of return is 
always 1, even for the case of positive drift, although some of these walks may take a very long 
time to return. Nevertheless, this fits with our intuition, since Cauchy walkers are capable of taking 
extremely large steps, on a scale larger than the drift. 
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Figure 1: Plots of the first passage probability functions f(n) for the unbiased and biased Cauchy 
walks. 
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Figure 2: Log plots of the first passage probability functions f(n) for the unbiased and biased 
Cauchy walks. 
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Figure 3: Log plots of the survival probability functions S(n) for the unbiased and biased Cauchy 
walks. 

First passage to a sphere 

To calculate the probability of first passage to the sphere, we make use of the electrostatic analogy. 
We consider the corresponding problem of a point charge of magnitude q = 1/4πR2D located at 
a distance r0 from the sphere, with the sphere’s surface is kept at zero potential. The probability 
of absorption at a point on the sphere’s surface will be given by the magnitude of the electric field 
there. Let �r0 be the the position of the walker, and by symmetry, consider pointing this in the 
positive z-direction. In the absence of the sphere, the electric potential is given by 

Φ(�r) = 
q

, 
|�r − �r0|

which can be rewritten in terms of spherical coordinates (r, θ, φ) as 

Φ(�r) = � 
q

. 
r2 sin2 θ + (r0 − r cos θ)2 

To solve for the electric potential in the presence of the sphere, we make use of the image method, 
introducing a charge of magnitude v at a location (x, y, z) = (0, 0, s), to give a solution of the form 

Φ(�r) = � 
q 

+ � 
v

. 
r2 sin2 θ − (r0 − r cos θ)2 r2 sin2 θ − (r cos θ − s)2 

In order to set the electric potential to zero on the sphere at r = R, we must have 
q v 

R2 sin2 θ − (r0 − R cos θ)2 
− 

R2 sin2 θ − (R cos θ − s)2 

q 2(R2 sin2 θ − (R cos θ − s)2) = v 2(R2 sin2 θ − (r0 − R cos θ)2) 
q 2(R2 − s 2 − 2Rs cos θ) = v 2(R2 − r0

2 − 2Rr0 cos θ). 
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To be valid for all θ, we must have q2s = v2r0, and 

q 2(R2 − s 2) = v 2(R2 − r0
2) 

R 
(R2 − s 2) = (R2 − r0

2) �s � 
R2 

(s − r0) s = 0. 
r0 

Thus s = R2/r0, which is inside of the sphere, since r0 > R. The magnitude of the charge is given 
by 

R2 

v 2 r0 = q 2 

r0 

−qR 
v = . 

r0 

Thus the electric potential is 

Φ(�r) = � 
q � 

qR 
. 

R2r2 sin2 θ − (r0 − r cos θ)2 
− 

r0 r2 sin2 θ − (r cos θ − )2 
r0 

Taking the normal derivative and multiplying by −D, we find that the PDF of absorption at a 
position (R, θ) on the sphere is 

21 1 − R
r0

2 

P (R, θ) = � .
4πRr �3/2 

1 − 2R cos θ + R2

2 

r0 r0 

The ratio between the probability of hitting at the nearest point on the sphere and the farthest is 

P (R, 0) 
�

1 + 2R/r0 + R2/r0
2 �d/2 �

1 + R/r0 
�d 

= = . 
P (R, π) 1 − 2R/r0 + R2/r2 1 − R/r00 

4 The Ballot Problem 

We define Pi and Qi be the partial scores for the two candidates after i votes have been counted, 
and let Ri = Pi − Qi be the difference between the two. At each step, Ri can either increase or 
decrease by one, and it is therefore a Bernoulli pathway on the integers, as discussed in lecture 14. 

We know that Pp+q = p and Qp+q = q, so Rp+q = p − q. In terms of the quantities introduced 
in lecture, we know that the number of possible ways to count the votes is therefore N(p − q, p + q), 
and each of these paths is equally likely. 

If the first candidate always has more votes than the second, we know that the Ri trace out a 
non-returning path to (p−q, p+q), and as shown in the lecture there are (p−q)N(p−q, p+q)/(p+q) of 
these. To obtain the probability, we just need to divide by the total number of paths, N(p−q, p+q), 
to obtain (p − q)/(p + q). 



M. Z. Bazant – 18.366 Random Walks and Diffusion – Problem Set 4 Solutions 7


p q r P p q r P p q r P p q r P p q r P 
1 0 0 1.0000 3 1 1 0.3000 4 1 1 0.4000 5 0 1 0.6667 5 1 4 0.0889 
2 0 0 1.0000 3 1 2 0.1333 4 1 2 0.2381 5 0 2 0.4285 5 2 2 0.2302 
2 0 1 0.3333 3 2 2 0.0762 4 1 3 0.1071 5 0 3 0.2500 5 2 3 0.1461 
2 1 1 0.1667 4 0 0 1.0000 4 2 2 0.1571 5 0 4 0.1111 5 2 4 0.0693 
3 0 0 1.0000 4 0 1 0.6000 4 2 3 0.0762 5 1 1 0.4761 5 3 3 0.1004 
3 0 1 0.5000 4 0 2 0.3333 4 3 3 0.0457 5 1 2 0.3214 5 3 4 0.0508 
3 0 2 0.2000 4 0 3 0.1428 5 0 0 1.0000 5 1 3 0.1944 5 4 4 0.0313 

Table 1: Computed probabilities for the three-person ballot problem for p ≤ 5.


r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 
q = 0 1.0000 0.7142 0.5000 0.3333 0.2000 0.0909 
q = 1 0.7142 0.5357 0.3890 0.2667 0.1636 0.0758 
q = 2 0.5000 0.3890 0.2937 0.2082 0.1313 0.0622 
q = 3 0.3333 0.2667 0.2082 0.1543 0.1013 0.0495 
q = 4 0.2000 0.1636 0.1313 0.1013 0.0712 0.0369 
q = 5 0.0909 0.0758 0.0622 0.0495 0.0369 0.0231 

Table 2: Computed probabilities for the three-person ballot problem for p = 6. 

4.1 Simulating three candidates 

Appendix C simulates the three-person voting process. All possible combinations of p, q, and r 
votes less than or equal to 12 were tested, each with N = 109 trials. For an underlying process 
with probability l of success, and N trials, we know that the observed number of successes will be 
a binomial distribution with mean Nl and variance Nl(1 − l) < N/4. Thus the standard deviation 
of our probability estimate is less than ( 

� 
N/4)/N = 1/

√
4N ≈ 1.58 × 10−5 . Thus we expect our 

probabilities to be correct to four decimal places. Tables 2, 3, 4, 5, and 6 show the computed 
probabilities for p = 6, p = 7, p = 8, p = 9, and p = 10 respectively, and table 1 shows the 
probabilities for p ≤ 5. 

4.2 Analytical results for three walkers 

Consider the case when r = 1. The total number of possible ways the votes can be counted is 
(p + q + 1)N(p − q, p + q), since any counting process can be viewed as a counting process between 
candidates A and B only, with C’s vote inserted at one of p + q + 1 located between the other votes. 

We know that in order for A to always be ahead, he must receive the first two votes. Consider 
any voting process between A and B where A is always ahead. If C’s vote is inserted before any 
votes are counted, then C will take the lead and A will not always be ahead. If C’s vote is inserted 
after one vote has been counted, then C will tie with A, and again the condition will be violated. 
However, if C’s vote is inserted at any later point, then it will not violate the condition, since A 
must have at least two votes by this stage. The total number of possible voting processes satisfying 
the condition in therefore (p + q − 1)F (p − q, p + q), and hence the probability of the condition being 
satisfied is 

(p + q − 1)F (p − q, p + q)
=

(p + q − 1)(p − q) 
.

(p + q + 1)N(p − q, p + q) (p + q + 1)(p + q)

For the case when r > 1 the reader should refer to references [2] and [3]. 
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r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 
q = 0 1.0000 0.7500 0.5556 0.4000 0.2727 0.1667 0.0769 
q = 1 0.7500 0.5835 0.4444 0.3272 0.2273 0.1411 0.0659 
q = 2 0.5556 0.4444 0.3484 0.2631 0.1868 0.1179 0.0559 
q = 3 0.4000 0.3272 0.2631 0.2047 0.1490 0.0964 0.0466 
q = 4 0.2727 0.2273 0.1868 0.1490 0.1128 0.0755 0.0376 
q = 5 0.1667 0.1411 0.1179 0.0964 0.0755 0.0539 0.0284 
q = 6 0.0769 0.0659 0.0559 0.0466 0.0376 0.0284 0.0179 

Table 3: Computed probabilities for the three-person ballot problem for p = 7.


r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 
q = 0 1.0000 0.7778 0.6000 0.4544 0.3334 0.2309 0.1429 0.0667 
q = 1 0.7778 0.6222 0.4906 0.3788 0.2824 0.1979 0.1238 0.0583 
q = 2 0.6000 0.4906 0.3960 0.3120 0.2360 0.1680 0.1064 0.0507 
q = 3 0.4544 0.3788 0.3120 0.2505 0.1936 0.1401 0.0902 0.0435 
q = 4 0.3334 0.2824 0.2360 0.1936 0.1531 0.1135 0.0746 0.0367 
q = 5 0.2309 0.1979 0.1680 0.1401 0.1135 0.0870 0.0591 0.0298 
q = 6 0.1429 0.1238 0.1064 0.0902 0.0746 0.0591 0.0426 0.0227 
q = 7 0.0667 0.0583 0.0507 0.0435 0.0367 0.0298 0.0227 0.0145 

Table 4: Computed probabilities for the three-person ballot problem for p = 8. 

A C++ codes for simulating the Cauchy first passage problem 

This listing provides a simple C++ code for generating the distribution of first passage times for a 
Cauchy walk. The code accepts two command line argumerts: the drift parameter d, and a random 
seed. Once all walks have been simulated, the first passage probabilities for each number of walk 
step are printed to the standard output. Walks which did not achieve first passage in n steps are 
listed in the final line of the output. 

#include <string> 
#include <iostream> 
#include <cstdio> 
#include <cmath> 
using namespace std; 

const double p=3.1415926535897932384626433832795;

const long n=10000; //Cutoff number of steps

const long w=10000000; //Number of walkers

double d=0; //Drift


inline int cauchy() {
static double x;x=1;

for(int i=0;i<n;i++) {

x+=d+tan(((double(rand())+0.5)/RAND MAX−0.5)∗p); 
if (x<0) return i; 

}
return n;


} 

int main(int argc,char∗ argv[]) {
srand(atoi(argv[1])); 
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r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 
q = 0 1.0000 0.8000 0.6362 0.5000 0.3849 0.2860 0.2000 0.1250 0.0588 
q = 1 0.8000 0.6544 0.5303 0.4236 0.3301 0.2477 0.1750 0.1103 0.0523 
q = 2 0.6362 0.5303 0.4379 0.3550 0.2801 0.2129 0.1521 0.0968 0.0462 
q = 3 0.5000 0.4236 0.3550 0.2921 0.2343 0.1807 0.1307 0.0841 0.0406 
q = 4 0.3849 0.3301 0.2801 0.2343 0.1914 0.1501 0.1103 0.0719 0.0351 
q = 5 0.2860 0.2477 0.2129 0.1807 0.1501 0.1203 0.0902 0.0600 0.0298 
q = 6 0.2000 0.1750 0.1521 0.1307 0.1103 0.0902 0.0698 0.0479 0.0244 
q = 7 0.1250 0.1103 0.0968 0.0841 0.0719 0.0600 0.0479 0.0348 0.0187 
q = 8 0.0588 0.0523 0.0462 0.0406 0.0351 0.0298 0.0244 0.0187 0.0120 

Table 5: Computed probabilities for the three-person ballot problem for p = 9.


r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 
q = 0 1.0000 0.8182 0.6667 0.5387 0.4294 0.3334 0.2500 0.1764 0.1111 0.0526 
q = 1 0.8182 0.6818 0.5643 0.4625 0.3715 0.2916 0.2206 0.1569 0.0994 0.0474 
q = 2 0.6667 0.5643 0.4746 0.3926 0.3196 0.2535 0.1935 0.1388 0.0886 0.0425 
q = 3 0.5387 0.4625 0.3926 0.3297 0.2718 0.2182 0.1683 0.1217 0.0783 0.0378 
q = 4 0.4294 0.3715 0.3196 0.2718 0.2271 0.1848 0.1442 0.1055 0.0685 0.0334 
q = 5 0.3334 0.2916 0.2535 0.2182 0.1848 0.1525 0.1208 0.0897 0.0590 0.0291 
q = 6 0.2500 0.2206 0.1935 0.1683 0.1442 0.1208 0.0976 0.0739 0.0495 0.0248 
q = 7 0.1764 0.1569 0.1388 0.1217 0.1055 0.0897 0.0739 0.0576 0.0398 0.0205 
q = 8 0.1111 0.0994 0.0886 0.0783 0.0685 0.0590 0.0495 0.0398 0.0291 0.0158 
q = 9 0.0526 0.0474 0.0425 0.0378 0.0334 0.0291 0.0248 0.0205 0.0158 0.0101 

Table 6: Computed probabilities for the three-person ballot problem for p = 10. 

d=atof(argv[2]);

int	i,j,c,a[n+1];

for(i=0;i<=n;i++) a[i]=0; 
for(j=0;j<w;j++) a[cauchy()]++; 
for(i=0;i<=n;i++) {

cout	<< i << " " << a[i] 
<< " " << double(a[i])/w << endl; 

}
} 

B	 C++/GSL code for simulating the Cauchy first passage prob­
lem 

This code performs the same task as that in appendix A but makes use of random number gen­
erating routines in the GNU Scientific Library[1] (GSL), which provide much better sources of 
randomness. The code accepts a single command line argument for the drift. The environment 
variable GSL_RNG_TYPE chooses the random number routine to use (in this case, set to mrg), and 
the environment variable GSL_RNG_SEED chooses a random seed. 

#include <string> 
#include <iostream> 
#include <cstdio> 
#include <cmath> 
#include <gsl/gsl rng.h> 
using namespace std; 
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const double p=3.1415926535897932384626433832795;

const long n=100000; //Cutoff number of steps

const long w=1000000; //Number of walkers

double d; //Drift

const gsl rng type ∗ T;

gsl rng ∗ r;


inline int cauchy() {
static double x;x=1; 
for(int i=0;i<n;i++) {

x+=d+tan((gsl rng uniform(r)−0.5)∗p); 
if (x<0) return i; 

}
return n;


} 

int main(int argc,char∗ argv[]) {
d=atof(argv[1]); 
gsl rng env setup(); 
T=gsl rng default; 
r=gsl rng alloc(T); 
int i,j,c,a[n+1]; 
for(i=0;i<=n;i++) a[i]=0; 
for(j=0;j<w;j++) a[cauchy()]++; 
for(i=0;i<=n;i++) {

cout << i << " " << a[i] 
<< " " << double(a[i])/w << endl; 

}
gsl rng free(r);


} 

C C++ code for simulating three-candidate vote counting 

The code below simulates a three-person voting process. It accepts one integer command line 
argument, which seeds the random number generator. Up to symmetry, all possible values of the 
three vote totals below max are tested, and the computed probabilities are printed to the standard 
output. 

#include <string> 
#include <iostream> 
#include <cstdio> 
#include <cmath> 
using namespace std; 

const int trials=200000000; //Total number of trials

const int m=12; //Max value of p,q,r
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//Returns a random integer between 0 and x−1 
inline int randi(int x) {

int y=(RAND MAX/x)∗x,z; 
do {z=rand();} while (z>=y); 
return z%x; 

} 

//Simulates a voting process with p, q, and r votes

//and returns true if the first candidate is always

//ahead

bool walk(int p,int q,int r) {

int a,b,c,h; 
a=b=c=0; 
while(p>0 | |q>0 | |r>0) {

h=randi(p+q+r);

if(h<p) {a++;p−−;} else

{ 

if (h<p+q) {b++;q−−;if (b>=a) return false;}
else {c++;r−−;if (c>=a) return false;}

}

}

return true;


} 

int main(int argc,char∗ argv[]) {
srand(atoi(argv[1])); //Seed random number generator 
int i,j,k,l,s; 
for(i=0;i<=m;i++) { //Loop over all possible triples 

for(j=0;j<i;j++) {
for(k=j;k<i;k++) {

s=0; 
for(l=0;l<trials;l++) {

if (walk(i,j,k)) s++;

}
cout	<< i << " " << j << " " 

<< k << " " << s << " " 
<< double(s)/trials << endl; 

}
}

}
} 
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