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1 Restoring force for highly stretched polymers 

1.1 A globally valid asymptotic approximation 

Using the substitution t = ua the expression can be rewritten as � � �N1 ∞ t sin t dt 
PN (r) = sin(rt/a)

2π2r 0 a t a � � �N1 ∞ sin t 
= t sin(rt/a) dt

2π2a2r 0 t 

The integrand is even, and can be rewritten as 

1 
� ∞ �

sin(t)
�N 

PN (r) = t sin(rt/a) dt
4π2a2r t �−∞ � �� �N1 ∞ 

irt/a − e−irt/a sin(t)
= u e dt

8iπ2a2r t−∞ 

1 
� ∞ 

irt/a 
�
sin(t)

�N 

= te dt
4iπ2a2r t �−∞

1 ∞ 

=
4iπ2a2r

t exp [−Nf(t)] dt 
−∞ 

where � � 
irt sin t 

f(t) = −
Na 

− log . 
t 

We define ξ = r/Na and keep it fixed. The first and second derivatives are 

1 
f �(t) = −iξ − cot t + 

t 
1 

f ��(t) = 1 + cot2 t − 
t2 . 

∗Solution to problem 1 based on sections of Random Walks and Random Environments by Barry Hughes. Solutions 
2 and 3 based on previous years. 
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By putting f �(t) = 0, we find that there is a saddle point at t0 = iL−1(ξ) where L is the Langevin 
function L(ξ) = coth ξ − 1/ξ. Over the range 0 < ξ < 1 the Langevin function is monotonic and 
thus has a well-defined inverse. We see that the second derivative of f can be written as 

1 
f ��(t) = 1 − coth2(−it) + 

(−it)2 � �2 

= 1 − coth(−it) − 
1 2 coth(−it)

+ 
2 

(−it) 
− 

(−it) (−it)2 

2ξ 
= 1 − ξ2 − 

L−1(ξ)
. 

This function is positive, so we deform the contour of integration to the line Im(t) = L−1(ξ). Our 
main contribution comes from the above saddle point and we obtain � � �N

L−1(ξ) 2π
e−NξL−1(ξ) sinh(L−1(ξ)) 

.PN (r) ∼ 
4π2ra2 N(1 − ξ2 − 2ξ/L−1(ξ)) L−1(ξ) � �N

L−1(ξ) 
e−NξL−1(ξ) sinh(L−1(ξ))∼ 

ξ 
� 

8π3N3a6(1 − ξ2 − 2ξ/L−1(ξ)) L−1(ξ) 
. � �N

L−1(r/aN) 
e−rL−1(r/aN)/a sinh(L−1(r/aN))∼ 

r 
� 

8π3Na4(1 − (r/aN)2 − 2r/aNL−1(r/aN)) L−1(r/aN) 
. 

1.2 Free energy 

The free energy is given by 

F = TS 

= −T log PN (r) 

∼ 
T 
2 

log 
� 
8π3Na4(1 − (r/aN)2 − 2r/aNL−1(r/aN)) 

� 
+ 
rTL−1

a 
(r/Na) 

sinh(L−1(r/Na))−T log L−1(r/aN) + T log r − TN log 
L−1(r/Na) 

. 

The restoring force is given by 

dF 
f = − 

dr 
T (−2r/a2N2 − 2/aNL−1(r/Na) + 2rM(r/Na)/(aNL−1(r/Na))2)

= − 
2(1 − (r/aN)2 − 2r/aNL−1(r/aN)) 

TL−1(r/Na) TrM(r/Na) M(r/aN)− 
a 

− 
Na2 + T 

aNL−1(r/aN) 
− T/r 

TN coth(L−1(r/Na)M(r/Na) TNM(r/Na)
+ 

Na 
− 
NaL−1(r/Na)


T (−2r/a2N2 − 2/aNL−1(r/NA) + 2rM(r/Na)/(aNL−1(r/Na))2)

= 

2(1 − (r/aN)2 − 2r/aNL−1(r/aN)) 
TL−1(r/Na) M(r/aN)− 

a 
+ T 

aNL−1(r/aN) 
− T/r 
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Figure 1: Comparison between the two approximations for free energy for the case when a = T = 1 
and N = 10. 

where M(z) is the first derivative of L−1(z). By the inverse function theorem, we know that 

1 
M(z) = . 

L�(L−1(z))

We compare this to the central region approximation, shown on problem set 1 to be � �3/2 � 
2 �

3 3r
PN

c (r) ∼ 
2πa2N 

exp −
2a2N

. 

The free energy for this expression is 

3 3 3r2 

F c = −
2 

log 
2πa2N 

+
2a2N

. 

and the restoring force is 
3r 

f c .∼ − 
a2N 

A comparison between the two expressions for free energy and restoring force are shown in figures 
1 and 2 respectively. We see a good match in the central region between the two approximations. 
As r a, we see that the restoring force begins to get very large, as would be expected for a highly →
stretched polymer. 
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Figure 2: Comparison between the two approximations for the restoring force for the case when 
a = T = 1 and N = 10. 

2 Linear Polymer Structure 

2.1 Mean Total Energy 

We define η = ασ2/kT so that p(θ) ∝ eη cos θ . The normalizing constant can be found as � 2π� π 

A(η) = e η cos θ sin θdθdφ 
0 0 

= 2π
eη − e−η 

= 4π 
sinh η

. 
η η 

Thus we have the normalized p(θ) as 

η1 η cos θ η cos θ p(θ) = e = e . 
A(η) 4π sinh η 

To get �EN � we first calculate the correlation coefficient ρ(T ), which is 

ρ(T ) = 
�Δ�xn · Δx� 

n+1� = �cos θ�.
2a

We can get this easily using the derivative of A(η): � 2π� π1 �cos θ� = 
A(η) 0 0 

cos θeη cos θ sin θdθdφ 

=
1 dA(η) 

= coth η − 
1 
. 

A(η) dη η 
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Therefore

1
�EN � = −(N − 1)αa2ρ(T ) = −(N − 1)αa2 coth η − . 
η 

2.2 Asymptotic scaling 

Since two adjacent steps have correlation ρ(T ), the correlation between n-th and n + m-th steps is 
generally given by 

�Δ�xn · Δ
2 

x� 
n+m� = ρ(T )m . 

a

From the lecture we know 

�R2 1 + ρ(T ) 
a 2 and aeff(T ) ∼ 

1 + ρ(T ) 
aN � ∼ 

1 − ρ(T ) 1 − ρ(T ) 
as N →∞. 

Thus the asymptotic behaviors of ρ(T ) and aeff(T ) are ⎧ ⎪⎨ ⎪⎩


η 3ασ2 

3
= 
kB T 

(η → 0 or T →∞)eη + e−η 1 
ρ(T ) =
 − 

η 
=
 1

1 − 
η 

= 1 − 
kBT 
ασ2 (η →∞ or T → 0),
e
η − e−η 

⎧ ⎪⎨
 3ασ2 

1 + (T →∞)
aeff(T ) 
a


kBT ⎪⎩∼

2ασ2 (T 0).kB T → 

A persistent Lévy flight 

First we take the sum of our non-independent steps, each expressed in terms of the independent 
steps, denoted with primes. 

N N 1−� 
XN = Δxn = (1 + ρ)Δx�1 + Δx� + (1 − ρ)Δx�N .n 

n=1 n=2 

The structure function, P̂ (k), of the PDF of
 Δxn is given by the product of the structure 
functions associated with each step. The length scales of the first and last steps are renormalized 
by 1 + ρ and 1 − ρ respectively. Thus the structure function for the entire walk is given by 

P̂N (k) = exp{−a(1 + ρ)|k| − a(N − 2)|k| − a(1 − ρ)|k|} = e−aN |k| 

and the corresponding PDF as found in Homework 1 is given by 

aN 
PN (x) = . 

π(x2 + a2N2)

Thus the half-width scales as Δx1/2 ∼ aN and it doesn’t depend on ρ at all. 
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4 A continuous-time random walk 

As shown in the lecture notes (2005, lecture 23), if the waiting time distribution is ψ(t) = e−t, then 
the number of steps N that have taken place by time t follows a Poisson distribution 

tN 

P(N, t) = 
e−t N !. 

We also know that the probability of a Bernoulli walker being at a location x after N steps is 

2−N 
N
N 
+x for x + N even 

P (x,N) = 2 

0	 for x + N odd. 

By summing over all possible numbers of steps taken, we find that the probability disribution of 
the walker being at a location x after time t is 

∞

P (x, t) = P (N, t)P(N, t) 
N=0 

Only the terms in this sum of the form N = x + 2m where m = 0, 1, 2, . . . will have a non-zero 
contribution, so 

∞

P (x, t) = P (x + 2m, t)P(x + 2m, t) 
m=0 
∞ 2−x−2m x+2m e−t�	 tx+2m

m= 
(x + 2m)!

m=0 � (t/2)x+2m∞
e−t 

= 
(x + m)!m! 

m=0 

= Ix(t)e−t 

where Ix(t) is the modified Bessel function. 


