Solutions to Problem Set 5

Edited by Chris H. Rycroft*

December 5, 2006

1 Restoring force for highly stretched polymers

1.1 A globally valid asymptotic approximation

Using the substitution ¢ = ua the expression can be rewritten as

Pa(r) = oo [ Lsintrt/a) [ntrdt
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The integrand is even, and can be rewritten as
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where

f'(t) = —i&—cott+ %

1
') = 1—|—cot2t—t—2.

*Solution to problem 1 based on sections of Random Walks and Random Environments by Barry Hughes. Solutions
2 and 3 based on previous years.
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By putting f/(t) = 0, we find that there is a saddle point at to = iL~1(¢) where L is the Langevin
function L(§) = coth& — 1/£. Over the range 0 < £ < 1 the Langevin function is monotonic and
thus has a well-defined inverse. We see that the second derivative of f can be written as

f'(t) = 1—coth?*(—it) + (_;)2
» 1 \? 2coth(—it) 2
= 1- <coth(—zt) - (—it)) i + (—it)?
G

This function is positive, so we deform the contour of integration to the line Im(t) = L=1(£). Our
main contribution comes from the above saddle point and we obtain

L) 27 Ner-1qe) [sinh(L71ENTY
Py(r) ~ M%J¢NG—?—%ﬂﬂ@D6ML@ﬁL”@)] |
N L7 o—NEL1(¢) {Sm}l@_l(@)]N
Ev/BrN3O(1 — €2 — 26/L71(6)) L= 1
N L~!(r/aN) eTL-IOVQN)ﬁL{ﬂnh(L-4<r/afv>> "
ry/8mNa*(1 — (r/aN)? — 2r/aNL~1(r/aN)) L=1(r/aN)

1.2 Free energy
The free energy is given by
F =TS

= —TlogPn(r)

o Dog [s1Nat(1 — (/aN)? 20 /aN L rfary] 4 TN

: ~1
—Tlog L™Y(r/aN) + Tlogr — TN log sinh(L”(r/Na))

L=Y(r/Na)
The restoring force is given by
dF
I= %

T(—2r/a?N? —2/aNL Y (r/Na) + 2rM(r/Na)/(aNL~(r/Na))?)
B 2(1 — (r/aN)? — 2r/aNL=1(r/aN))

TL=Y(r/Na) TrM(r/Na) M(r/aN)

B a a Na? +TaNL_l(v“/aN) —Tr
TN coth(L™Y(r/Na)M(r/Na) TNM/(r/Na)

+ Na ~ NaL='(r/Na)

T(—2r/a?N? —2/aNL~'(r/NA) +2rM(r/Na)/(aNL~*(r/Na))?)
2(1 —(r/aN)2 —2r/aNL=Y(r/aN))
TL Y(r/Na) M(r/aN)
B a +TaNL*1(7"/aN)

-T/r
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Figure 1: Comparison between the two approximations for free energy for the case when a =T =1
and N = 10.

where M (z) is the first derivative of L=!(z). By the inverse function theorem, we know that

1

MO TGy

We compare this to the central region approximation, shown on problem set 1 to be

. 3 \*? 3r2
Pr(r) ~ (27ra2N) P <_ 2a2N> '

The free energy for this expression is

3 3 3r?
Fe=-21 .
9 %8 <27ra2N> TN

and the restoring force is
3r

C
P~ =N
A comparison between the two expressions for free energy and restoring force are shown in figures
1 and 2 respectively. We see a good match in the central region between the two approximations.
As r — a, we see that the restoring force begins to get very large, as would be expected for a highly
stretched polymer.
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Figure 2: Comparison between the two approximations for the restoring force for the case when
a=T=1and N =10.

2 Linear Polymer Structure

2.1 Mean Total Energy

We define = a0 /KT so that p(f) o €7°*?. The normalizing constant can be found as

27
/ / %89 sin 0dfd g

e”—e N in smhn

n n

Thus we have the normalized p(0) as

p(@) — 1 encosé’ _ n encosG‘

A(n)  4msinhn

To get (En) we first calculate the correlation coefficient p(7T), which is

<A}n . AIB_7;+1>

p(T) = 2 = (cos0).
We can get this easily using the derivative of A(n):
s
(cos ) / / cos 0e” % sin dOdg
1 dA(n) 1
= ————+ =cothn— —.
A(n) dn U
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Therefore ]
(Ex) = —(N = 1)aa?p(T) = —(N — 1)ad? <cothn - 77) .

2.2 Asymptotic scaling

Since two adjacent steps have correlation p(T"), the correlation between n-th and n + m-th steps is
generally given by

Sl p(rym.
From the lecture we know
14 p(T 14+ p(T
<R12\/’> ~ 1_% a® and ac(T) ~ I_ZET; a as N — oo.

Thus the asymptotic behaviors of p(T") and acg(T) are

n  3ao?
) eh4+e 1 37 kgl (n—0or T — o)
PE) = e~y 1 kpT
er—em o l—f:1—i2 (n—ocorT —0),
7 ao
3ao?
aesi(T) 1+ T (T'— o0)
“ 2og (T — 0).

3 A persistent Lévy flight

First we take the sum of our non-independent steps, each expressed in terms of the independent
steps, denoted with primes.

N N-1
XN = ZAmn = (1+ p)Az) + Z Azl + (1 — p)Azly.
n=1 n=2

The structure function, f’(k:), of the PDF of ) Az, is given by the product of the structure
functions associated with each step. The length scales of the first and last steps are renormalized
by 1+ p and 1 — p respectively. Thus the structure function for the entire walk is given by

]5N(k:) =exp{—a(l+ p)|k| — a(N — 2)|k| — a(1 — p)|k|} = o—aN K|
and the corresponding PDF as found in Homework 1 is given by

alN

Pr() = oy

Thus the half-width scales as Az;/; ~ aN and it doesn’t depend on p at all.
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4 A continuous-time random walk
As shown in the lecture notes (2005, lecture 23), if the waiting time distribution is ¥ (¢) = ™", then
the number of steps N that have taken place by time ¢ follows a Poisson distribution

oy
P(N,t) = —N !
We also know that the probability of a Bernoulli walker being at a location x after N steps is

2_N(&) for z + N even

P(x,N) = 2
0 for x + N odd.

By summing over all possible numbers of steps taken, we find that the probability disribution of
the walker being at a location x after time t is

= i P(N,t)P(N,t)
N=0

Only the terms in this sum of the form N = x + 2m where m = 0,1, 2,... will have a non-zero
contribution, so

o0
P(z,t) = > P(x+2m,t)P(z+2m,t)
m=0
_ 9—z— Qm(x-i;sm)tz-s-Zme—t
= (x +2m)!
B i (t/2)+2met
= (z +m)!m!
= IL(t)e™?

where I,,(t) is the modified Bessel function.



