
� � 

� 

� 

� 

� 

� 

� 
� � � � 

1 

Solutions to Exam 1 

Chris H. Rycroft and Martin Z. Bazant 

March 11, 2005 

Multivariate normal random walk 

To calculate the probability density function of �XN , we begin by finding the characteristic function 
of a single step. We know that 

x C−1�� x2 n x) = 
exp − 1 ·

pn(� 1/2(2π)d/2 |Cn|
and therefore � 

k·� x·C−1�p̂n(�k) = 
1 

1/2 
e−i

� x e−� n x/2dd�x 
(2π)d/2 |Cn| 

where the integral is taken over all space. To evaluate this, we first note that the matrix C−1 isn 

by definition symmetric and positive definite. As described in the lectures, we can therefore find a 
symmetric square root B, such that C−1 = BB. We can therefore write n 

� x)· x/2dd�p̂n(�k) =
(2
|
π)d/2 

e−i
� x e−(B� B� x, 

B| k·

y x. Thus dd� = |B dd�which suggests making a substitution of the form � = B� y | x and 

y)e−� y/2dd�y·�p̂n(�k) = 
(2π

1
)d/2 

e−i
�k·(B−1� y 

1 
e−(� k)·(� k·(BB)−1�k/2dd�= y+iB−1� y+iB−1�k)/2−� y

(2π)d/2 

k· �Cnk/2= e−
�

. 

Thus the characteristic function of the PDF after N steps have been taken is given by 

N

P̂N (�k) = p̂n(�x) 
n=1 

N
k· �= e−
� Cnk/2 

n=1 

= exp 
1�k 

N

Cn �k .− 
2 
· 

n=1 

1 
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To invert this expression, we note that this is just the characteristic function of a multivariate 
gaussian with correlation matrix 

N

C = Cn 
n=1 

and therefore
 ��N 
−1 

1 x Cn xexp − n=12 · 
x) =PN (�

Cn 

.�N 
1/2 

(2π)d/2 n=1 

2 Student random walk 

2.1 The characteristic function 

The characteristic function is given by 

Ae−ikx ∞ 

(1 + x2)2 −∞ 
dx 

Ae−ikx ∞ 

(x + i)2(x − i)2 
dx, 

−∞ 

p̂(k) =


= 

and to evaluate this we make use of residue calculus, noting that the integrand has poles of order

two at x = ±i. For the case when k < 0, we can close the contour in the upper half plane, obtaining


Ae−ikx 
p̂(k) = 2πiRes = i


(x + i)2(x − i)2 
, x 

e−ikx d 
= 2πiA 

dx (x + i)2 x=i 

= −2πiA 
e−ikx(ikx − k + 2) 

(x + i)3 x=i 

−2πiA 
2e−k(1 − k)

= 
(2i)3 

Aπ 
= e−k(1 − k).

2 

Since p̂(0) = 1 in order for the original probability density function to be normalized, we see that 
the tail amplitude is given by A = 2/π. If k > 0, then we see that making the substitution y = −x 
in the original expression gives


e−i(−k)y∞ 

2)2 
dy p̂(k)
= 

(1 + y−∞ 

and therefore we know immediately that 

p̂(k) = e k(1 + k) 

from which we know that the general solution is 

p̂(k) = e−|k|(1 + |k|). 
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The first few terms of the Taylor expansion are 

k2 

p̂(k) = (1 − k +
2 
− . . .)(1 + k )| | | |

k2 

= (1 − + . . .)
2 

and thus we see that m1 = 0, m2 = 1, from which it follows that σ2 = c2 = m2 = 1. 

2.2 Leading asymptotic behavior in the tail 

We see that as ,x →∞
2


p(x) ∼

πx4 

and by additivity of power­law tails, we know that to leading order, 

2N 
PN (x) ∼ . 

πx4 

2.3 Two terms of the asymptotic expansion in the central region 

To calculate the asymptotic expansion of the rescaled variable ZN = XN/σN , we first find the 
logarithm of the characteristic function, which is given by 

ψ(k) = log(e−|k|(1 + |k|)) 
= − |k|+ log(1 + |k|) 

k 5k2 k4 

= −
2

+ 
|k| 3 

+ . . . . 
3 
− 

4
+ 
|
5
| − 

k

6 

6 

We know that the probability density function of XN is given by 
∞ 

ikx PN (x) = e e Nψ(k) dk 

2π−∞ 

and therefore the PDF of the rescaled variable, given by φN (z) = 
√
NPN (z

√
N), is 

∞ 
iwz φN (z) = e e Nψ(w/

√
N)dw 

2π �−∞ 
2 3 4 5 

w w 

∼ 
∞ 

e iwz e
− 

2 
+ 
|w| |w|
3
√

N 
− 

4N 
+ 

5N
√

N 
dw 

2π �−∞ � 
9 

�� 
4 
�� 

5 
� 

w w w dw ∞ 

e iwz− w 
2

2 

1 + 
| | 3 

+ 
6 

+ 
|w| 

1 + 
|w|∼ 

3
√
N 2!N32 3!N3/233 

1−
4N 5N3/2 2π 

7 9∞ 

e iwz− w 
2 1 + 

|w| 3 1 w w dw 
� 
−∞ 

2 

� � 
4 6 

� 

+
1 

� 
5 |w| 

+ 
|w| 

. 
N3/2

∼ 
3
√
N 

+ 
N 

− 
4 

+ 
18 

|w
5
| −

12 162 2π−∞ 

We evaluate this expression term by term. The leading order behavior is given by 
∞ 

iwz− w 2 dw 
φ(z) = e 2 

2π−∞
2 z 
2e− 

= .√
2π 
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The first order correction is 

w 2 dw 
g1(z) = 

� ∞ 

e iwz− 
2 
|w
3
| 3 

2π �−∞ 
2 w 

= 
∞ 

e− 
2 w 3 cos(wz)

dw 

3π0 

From the lectures, we know that integrals of this form can be expressed in terms of Dawson’s 
integral 

x 
t2 D(x) = e−x

2 
e dt 

0 

via the identity 
w 2 1∞ 

w m cos(wz)e− 
2 dw =

(−2)(m−1)/2 
D(m) √z 

2 
, 

0 

and thus we have � � 

g1(z) = − 
6
1 
π
D(3) z

.√
2 

2.4 Four terms of the asymptotic expansion 

The second order correction is given by 

2 4 6w w dw 
g2(z) = 

∞ 

e iwz− w 
2 − 

4
+

18 2π−∞ 

and since this does not have any |w terms, we can evaluate using Hermite polynomials, via the |
identity 

2 
2 2w

∞ 
iwz m 

� 
∂ 
�m e− z 

e w e− 
2 dw = −i √

2π 
= imHm(z)φ(z),

∂z −∞ 

obtaining 

g2(z) = −φ(z) 
H4(z) + 

H6(z) 
.

4 18 

For third order, we use Dawson’s integral again, obtaining 

2 dw 
g3(z) = 

� ∞ 

e iwz− w 
2 

� 
5 |w| 7 

+ 
|w| 9 |w

5
| − 

12 162 2π−∞ � � 
7 9 

w 2 dw 
= 

� ∞ 

e− 
2 cos(wz) 

|w
5
| 5 − 

12
|w| 

+ 
|w|
162 π0 ⎛ � � � � � �⎞ 

=
1 ⎝ 

D(5) z

+ 
D(7) z

+ 
D(9) √z

2 ⎠√
2 

√
2 

π 20 96 2592 
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Hence, the first four terms of the asymptotic expansion are given by 

φN (z) ∼ φ(z) + 
g1(z) + 

g2(z) + 
g3(z)√

N N N3/2 

∼ φ(z)− 
1 

D(3) z φ(z) H4(z) H6(z) 
6π
√
N 

√
2 

− 
N 4

+ 
18 ⎛ � � � � � �⎞ 

1 D(5) √z
2 

D(7) √z
2 

D(9) √z
2+ 

πN3/2 
⎝ 

20
+ 

96
+ 

2592 
⎠ . 

3 The largest step 

3.1 Finding the CDF 

Since each of the N events xn is sampled independently, the CDF of x(N) is given by 

FN (x) = P(x(N) < x) 

= P max xn < x 
1≤n≤N 

= P((x1 < x) ∩ (x2 < x) ∩ . . . ∩ (xN < x)) 
= P(x1 < x)P(x2 < x) . . .P(xN < x) 
= P (x)N . 

We could also get the same answer using the approach of Problem 1 on Problem Set 2, where 
wrote a general expression for the PDF of the nth order statistic, x(n): 

fN,n(x) = N
N − 1 

P (x)n−1(1 − P (x))N−n p(x). 
n− 1 

Evaluating this expression for the largest outcome, n = N , we have 

FN (x) = fN,N (x) = NP (x)N−1 p(x) 

which gives FN (x) = P (x)N upon integration. 

3.2 The most probable value of x(N) 

The most probable value of x(N) is determined by finding the maximum of its probability density 
function. From above, we know that the PDF of x(N) is given by 

d d 
fN (x) = FN (x) = P (x)N = NP (x)N−1 p(x)

dx dx 

Thus 
fN (x) = N(N − 1)P (x)N−2 p(x)2 + NP (x)N−1 p�(x) 

and hence the most probable value of x(N) will be the solution to the equation 

0 = (N − 1)p(x)2 + P (x)p�(x). (1) 

Since it is clear from its definition that fN (x) → 0 as |x| → ∞, we expect to find at least one 
solution to this equation which corresponds to a maximum. 
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3.3 A power­law tail 

If the range of x is unbounded, then clearly xmax (N) → ∞ as N → ∞. Therefore, to determine 
the leading order behavior of xmax (N) as N →∞, we need only consider the tail of p(x). 

If p(x) ∼ A/x1+α, then by integrating and differentiating, 

A 
P (x) ∼ 1−

αxα 

p�(x) ∼ − 
A(1 + α) 

2+αx

as x →∞. Substituting into equation 1 gives 

0 ≈ 
(N − 1)A2 A 

+ 
αxα 

− 1 
A(1 + α) 

2+α 2+αx x

α0 ≈ (N − 1)A + 
A(1 + α) − (1 + α)x 

α 

and hence 

A(N − α−1)α x ∼ 
1 + α � 

A(N − α−1)
�1/α 

x ∼ 
1 + α � �1/αAN ∼ 

1 + α 

Thus for large N we see that xmax(N) = O(N1/α). For α > 2 we know that the width of the central 
region is O(

√
N) and hence we see that for large N the largest step will be smaller. 

3.4 Anomalous scaling 

If 0 < α < 2 we see that square root scaling is inappropriate, since the size of the largest step 
will be larger than the width of the central region. Assuming that the largest step dominates the 
position, we therefore expect that for these cases, the anomalous scaling exponent of the width of 
the distribution will be ν(α) = 1/α > 1/2. On Problem Set 1, we showed that the appropriate 
scaled variable for the Cauchy random walk was ZN = XN/N . For the Cauchy distribution α = 1, 
and thus the largest step xmax(N) = O(N) exactly matches the scale of the width. 

Random walks whose steps have infinite variance are called “Lévy flights”. They exhibit “su­
perdiffusion”, since the width of probability distribution spreads must faster than 

√
N . This cal­

culation also shows, however, the such processes completely lack “self­averaging”, since a single 
walker generally leaps to near its final position in a single large step, without much exploring the 
accessible region set by the PDF (as would an ensemble of many such walkers). 


