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18.366 Random Walks and Diffusion, Spring 2005, M. Z. Bazant. 

Solutions to Exam 2 
Martin Z. Bazant 

1. Electrochemical Equilibrium. 

(a) The Fokker­Planck (or Nernst­Planck) equations for diffusion and drift of ions in the “mean­
field” electrostatic potential, φ, are: 

∂c ∂ dφ ∂2 

∂t 
± = 

∂x 
±µ±e

dx
c± + 

∂x2 
(D±c±) (1) 

where µ± = D±/kT are the ionic mobilities, given by the Einstein relation. Assuming steady 
state and constant D±, we obtain ODEs for equilibrium: 

d dψ d2c
c (2)± 

dx 
± 
dx 

= ± 

dx2 

where ψ = −eφ/kT . Integrating twice, using the boundary conditions, ψ(∞) = 0 and 
c±(∞) = c0, we obtain the expected concentration profiles of Boltzmann equilibrium: 

c0e
�eφ(x)/kT c±(x) = c0e±ψ(x) = (3) 

The diffuse charge density of ions is then 

ρ(x) = e(c+(x)− c−(x)) = 2c0 sinh ψ(x) (4) 

which combines with Poisson’s equation of electrostatics : 

d2φ 
= ρ (5)−ε 

dx2 

to produce the Poisson­Boltzmann equation. Changing variables, we obtain the required 
dimensionless form: 

d2ψ 
= sinhψ (6)

dy2 

where y = x/λ with a characteristic length scale, 

εkT 
λ =

2e2c0 
. (7) 

(b) Putting the units back, the linearized problem is 

λ2 d
2φ 

= φ, φ(∞) = 0, φ(0) = −ζ (8)
dx2 

which is easily solved: 
−ζe−x/λφ(x) = (9) 

It is clear that the influence of the surface potential ζ decays exponentially with a character­
istic length scale, λ. Equivalently, the (linearized) charge density 

εζ 
e−x/λρ(x) = 

λ2 
(10) 

is “screened” in the bulk solution beyond a distance, λ, usually called the “Debye screening 
length” (even though it was derived earlier by Gouy). 
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(c) The region near the charged surface is commonly called a “double layer” since it looks like 
a capacitor, with the charge q on the surface, equal and opposite to the diffuse charge in 
solution which screens it: 

∞ dφ dφ 
q = ρ(x)dx = ε

dx
|∞ = −ε (0) (11)0− 

0 dx 

To obtain the charge­voltage relation q(ζ), and thus the differential capacitance, dq/dζ, we 
integrate the dimensionless PBE, using the trick of multiplying by ψ�: 

ψ�ψ�� = ψ� sinh ψ (12) 

Integrating and requiring ψ(∞) = ψ�(∞) = 0, we obtain 

1 
2
(ψ�)2 = cosh ψ − 1 = 2 sinh2(ψ/2) (13) 

We choose the “­” square root 
ψ� = −2 sinh(ψ/2) (14) 

because the surface charge q in Eq. (11) has the opposite sign of the diffuse charge density, 
ρ(0) ∝ ψ(0) ∝ zeta. Putting units back and using Eq. (11), we obtain the desired result: 

2εkT eζ 
q(ζ) = sinh (15)

λe 2kT 

(Note that in the limit of small voltage, ζ � kT/e, the interface behaves like a parallel­plate 
capacitor of dielectric constant ε and width λ, since the capacitance is dq/dζ ∼ ε/λ.) 

(d) Since Eq. (14) is separable, 
dψ 

(16)
2 sinh(ψ/2) 

= −dy 

it is easily integrated (provided that you are comfortable with hyperbolic functions!): 

log tanh(ψ/4) = −y + C (17) 

The constant C is typically replaced by γ: 

tanh(ψ/4) = γe−y (18) 

where 
γ = tanh(eζ/4kT ) (19) 

Thus, we arrive at the Gouy­Chapman solution to the full, nonlinear Poisson­Boltzmann 
equation: 

ψ(y) = 4 tanh−1(γe−y) (20) 

or 
4kT 

φ(x) = − 
e 

tanh−1(γe−x/λ), (21) 

which exhibits nonlinear screening at the same length scale λ. 
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2. First passage of a set of random walkers. 

(a) For each (independent) walker, we make a continuum approximat and solve 

∂P ∂2P 
= D

∂x2 
, P (x, t = 0) = δ(x − x0) (22)

∂t 

subject to an absorbing boundary condition P = 0 at the origin, the “target”. By linearity, 
we can satisfy the boundary condition by introducing an image source of negative sign at 
−x0, which respresents “anti­walkers” which annihilate with the true walkers whenever they 
meet, at the origin (e.g. see Redner’s book): 

e−(x−x0)2/4Dt − e−(x+x0)2/4Dt 

P (x, t) = √
4πDt 

(23) 

In terms of this solution, the survival probability is 

Si(t) = Prob(Ti > t) = 
∞ 

P (x, t)dt = erf(x0/
√

4Dt) (24) 
0 

in terms of the error function � z 
erf(z) = √2 

π
e−x

2 
dx (25) 

0 

The PDF of the first passage time is then 

2 
fi(t) = −Si�(t) = 

x0 
e−x (26)√

4πDt 
0/4Dt 

which is the Lévy­Smirnov density, derived by different means in lecture. 

(b) On exam 1, we studied the largest step of a random walk, and here we need the smallest 
return time. By the same basic argument, the indepedence of the walkers implies: 

S(t) = Prob(T > t) = Prob(Ti > t)N = Si(t)N (27) 

Therefore, the PDF for the minumum first passage time is 

f(t) = −S�(t) = Nfi(t)Si(t)N−1 (28) 

(c) Since erf(z) ∼ 2z/
√
π as z → 0, we have � �N 

∝ t−N/2S(t) ∼ 
x0 (29)√
πDt 

and f(t) ∝ t−1−N/2 as t → ∞. Therefore, the mth moment of the minimum first passage 
time � ∞ 

= tmf(t)dt (30)�Tm�
0 

is finite if and only if m − 1−N/2 > −1, or N > 2m. In particular, the mean first passage 
time (m = 1) is finite if and only if N ≥ 3. 
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3. Escape from a symmetric trap.1 . 

(a) Mean escape time. We have: 

∂P ∂2P D ∂ � � 
= D + φ�(x)P (x, t)

∂t ∂x2 kT ∂x 

where P (x, t) = p(x, t|0, 0) within initial condition at the bottom of the well, P (x, 0) = δ(x), 
and absorbing boundary conditions at the exit points, P (±x1, t) = 0. We can write: 

∂P 

∂t 
= LxP (31) 

with: � � �� 
∂ Lx = D e−φ(x)/kT ∂ e φ(x)/kT (32)
∂x ∂x 

The probability S(t) of realization which have started at x = 0 and which have not yet 
reached x = ±x1 up to time t is given by: 

x1 x1 

S(t) = p(x, t|0, 0)dx = P (x, t)dx 
−x1 −x1 

The distribution function f(t) for the first passage time is then given by: 
x1∂ � � ∂S ∂P 

f(t) = 1− S(t) = 
∂t 

− 
∂t 

= − 
∂t 

dx 
−x1 

The mean escape time is then given by2: 
∞ x1 ∞ ∂P 

τ = tf(t)dt = U1(x)dx with U1(x) = − 
0 

t dt 
∂t 0 −x1 

Performing an integration by part gives: 
∞

U1(x) = P (x, t)dt 
0 

By applying the operator Lx on both sides of this relation, we get: 
∞ ∞ ∂P LxU1(x) = LxP (x, t)dt = dt = −P (x, 0) = −δ(x)

∂t 0 0 

where we have used (31). Using the expression (32) for Lx, it is easy to solve: 

e−φ(x)/kT x1 y 

U1(x) = e φ(y)/kT δ(z)dz dy
D x 0 

Now we can express the mean escape time: 
x1 x1 

τ = U1(x)dx = 2 U1(x)dx 
−x1 0 

x1 x11 
e−φ(x)/kT φ(y)/kT dy= e dx 

D 0 x 

1Solution written by Thierry Savin (2003). Courtesy of Thierry Savin. Used with permission. 
2The function U1(x) is denoted g0(x) in Lecture 18 notes from 2005, and some of this derivation can also be found 

there. 
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By partial integration: ��� ��� ��x1 x x11 
e−φ(y)/kT dy φ(y)/kT dyτ = e 

D 0 x � �� � 0 

x1 x 

+
1 

e φ(x)/kT e−φ(y)/kT dy dx 
D 0 0 

To get finally: 
x1 x1 φ(x)/kT dy e−φ(y)/kT τ = dx e 

D 0 0 

(b) Kramers Mean Escape Rate. We use the saddle­point asymptotics to evaluate the integrals 
as kT 0.→ � x 

e−φ(y)/kT dy ∼ 
1 
� 

2πkT
e−φ(0)/kT 

� 
πkT 

= 
2 φ��(0) 2K00 

So that: � x1 x 
φ(x)/kT dy e−φ(y)/kT πkT x1 

φ(x)/kT dxdx e e∼ 
2K0 00 0 

with: � � � 
x1 

φ(x)/kT dx ∼ 
1 2πkT φ(x1)/kT = 

πkT
eE/kT e e

2 
− 
φ��(x1) 2K10 

Finally:

1


R = 
τ 
∼ R0(T ) =

2D
√
K0K1 

e−E/kT ∝ e−E/kT 
πkT 

(c) First Correction to the Kramers Escape Rate. In the next derivation, we will use the following 
relation: 

b2 6+∞
4 2

e−ax
+∞ 

e−ax
2+bx3+cx dx ∼ 1 + bx3 + cx 4 + 

x
dx

2−∞ �−∞� � 
π 3 c 15 b2 

= 1 + + 
3a 4 a2 16 a

Using saddle­point asymptotics with the previous formula: � � � � �2 � 
x 

e−φ(y)/kT dy ∼ 
1 2πkT kT φ(4)(0) 5kT φ(3)(0) 

e−φ(0)/kT � �2 + 
24 � φ��(0) 

�32 φ��(0) 
1− 

8 φ��(0)0 

Since the well is symmetric, φ(3)(0) = 0, we end up with: 

x πkT kT M0 
e−φ(y)/kT dy ∼ 

2K0 
1− 

8 K0
2 

0 

with M0 = φ(4)(0). The same way: 

1 2πkT kT 5kT 
� x1 

φ(x)/kT dx ∼ 

� � 
φ(4)(x1) φ(3)(x1) 

�2 � 
φ(x1)/kT e � �3 e

2 
− 
φ��(x1) 

1 +
8 φ��(x1) 

�2 − 
24 � φ��(x1)0 
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that we write: 

x1 πkT kT M1 5kT L2 
φ(x)/kTdx ∼e 1 + e

2K1 8 K1
2 − 

24 K
1
3 

E/kT 

0 1 

with L1 = φ(3)(x1) and M1 = φ(4)(x1). We write then: 

1 kT M0 kT M1 5kT L2 
11 + τ ∼ 

R0(T )
1− 

8 K0
2 8 K1

2 − �� 
24 K1

3 

1 kT M1 M0 5 L2 
1∼ 

R0(T ) 
1 + 

8 K2 − 
K0

2 − 
3K3 

1 1 

that is: 

R(T ) ∼ R0(T ) 1− 
kT M1 M0 5 L2 

1 

8 K2 − 
K0

2 − 
3K3 

1 1 

with: 
K0 = φ��(0) 

φ(3)(x1) 
M0 = φ(4)(0)

L1 = 
K1 = −φ��(x1) M1 = φ(4)(x1) 


