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18.366 Random Walks and Diffusion, Spring 2005, M. Z. Bazant. 

Exam 2 

Due at 9:30am in lecture on Thursday April 14. 

Directions: (i) Work independently, and do not discuss the exam with anyone. (ii) You may 
quote formulae from 2005 18.366 lecture notes and problem sets, but all other steps in your solutions 
should be derived in detail. (iii) You may consult the required and recommended books, but no other 
resources (books, web sites, etc.), except for mathematical reference book, such as Abramowitz and 
Stegun Handbook of Mathematical Functions. (iv) Late exams will not be accepted without a valid 
excuse. 

1. Electrochemical equilibrium. Consider an electrolyte with positive and negative ions (charged 
particles in solution) of charges, ±e, diffusion constants, D±, and concentrations, c±(x), respec­
tively. Instead of treating the electrical force between each ion pair, consider the “mean­field 
approximation” that each ion feels only an average electric force, �e dφ/dx, with a mobility given 
by the Einstein relation. The electrostatic potential, φ(x), satisfies Poisson’s equation, 

d2φ −ε = e(c+ − c−)
dx2 

where ε is the permittivity of the solvent (e.g. water). In this approximation, each ion moves 
independently in the self­consistent electric field, so c+(x) and c− satisfy steady Fokker­Planck 
equations1 . Consider ions in solution near a charged surface, x > 0, with c±(∞) = co and 
φ(∞) = 0 and φ(0) = −ζ (the “zeta potential”). 

(a) Show that potential satisfies the dimensionless “Poisson­Boltzmann equation” (PBE), 

d2ψ 
= sinhψ 

dy2 

where ψ(y) = −eφ(x)/kT and y = x/λ. What is λ? 

(b) Solve the linearized PBE, and explain why λ is called the “screening length”. 

(c) Integrate the nonlinear PBE once to obtain the total interfacial charge, 

q(ζ) = −e 
∞

(c+ − c−)dx. 
0 

(d) Extra credit: Integrate again to obtain φ(x). 2 

1In electrochemistry, these are the “Nernst­Planck equations”. 
2This is the famous solution of Gouy (1910) and Chapman (1914). 
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2. First passage of a set of random walkers. Consider N independent random walkers released 
from x = x0 > 0, and let Ti be the first passage time to the origin (1 ≤ i ≤ N) with PDF fi(t). 
Approximate the PDF of the position of each walker by the solution to the diffusion equation, 

∂P ∂2P 
= D

∂x2 
, P (x, t = 0) = δ(x − x0)

∂t 

(a) Solve with P (0, t) = 0 to obtain the survival probability, Si(t) (that the ith walker has not 
yet reached the origin). [Hint: introduce an “image” source.] Show that fi(t) = −Si

�(t) is 
the Smirnov density, derived by other means in lecture. 

(b) Find the PDF f(t) of the first passage time for the set of N walkers, T = min1≤i≤N Ti, when 
one of them reaches the origin for the first time. 

(c) Show that �Tm� < ∞ if and only if N > 2m. In particular, the expected first passage time 
is finite if and only if N ≥ 3, as mentioned in class. 

3. Escape from a symmetric trap.. Consider a diffusing particle which feels a conservative 
force, f(x) = −φ�(x), in a smooth, symmetric potential, φ(x) = φ(−x), causing a drift velocity, 
v(x) = bf(x), where b = D/kT is the mobility and D is the diffusion constant. If the particle 
starts at the origin, then PDF of the position, P (x, t), satisfies the Fokker­Planck equation, 

∂P ∂ ∂2P 
+ (v(x)P (x, t)) = D 

∂t ∂x ∂x2 
, 

with P (x, 0) = δ(x). Suppose that the potential has a minimum φ = 0 at x = 0 with φ��(0) = 
K0 > 0 and two equal maxima φ = E > 0 at x = ±x1 with φ��(x1) = −K1 < 0. Let τ be the 
mean first passage time to reach one of the barriers at x = ±x1 (and then escape from the well 
with probability 1/2). 

(a) Derive the general formula 

x1 x1 � 
τ = dx e φ(x)/kT dy e−φ(y)/kT 

D 0 0 

(b) In the low temperature limit, kT/E → 0, calculate the leading­order asymptotics of the 
escape rate, R = 1/2τ ∼ R0(T ), using the saddle­point method. Verify the classical result of 
Kramers: R0(T ) ∝ e−E/kT . 

(c) Calculate the first correction to the Kramers escape rate: 

kT 
R(T ) ∼ R0(T ) 1 + a . 
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