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Solutions to the Midterm Exam 

Martin Z. Bazant 

November 16, 2006 

1 Discrete versus continuous steps in a random walk 

1.1 Finding a generating function and D2(a) 

For pn = Ca|n|, the probability generating function is 

∞
P (z) = pnz 

n 

n=�−∞ � � � 
n∞ ∞ a 

= C (az)n + 
z 

n=0 n=1 

1 a 
= C 

1 − az 
+ (a < |z| < a−1) � 
z − a � 

(1 − a2)z 
= C .

(1 − az)(z − a) 

For normalization, P (1) = pn = 1, we need 

C(a) = 
1 − a 
1 + a 

and thus 

P (z) = 
(1 − a)2z

.
(1 − az)(z − a)

The second moment is easily calculated as 

�∞ ∞
σ2 = n 2 pn = n(n − 1)pn = P ��(1) 

n=−∞ n=−∞ 

where we use npn = 0 since pn = p−n. Since 

P ��(z) = 2aC[a(1 − az)−3 + (z − a)−3], P ��(1) = 
2(a + 1)aC 

(1 − a)3 

we finally obtain the diffusivity, 

σ2 C(1 + a)a a 
D2(a) = = = 

2τ (1 − a)3 (1 − a)2 

since the time step in the continuum approximation is τ = 1. 
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1.2 Continuum approximation 

Now we consider the continuum approximation, 

1 
p(x) = e−|x|/b, (b = −1/ log a)

2b 

which has the same exponential decay as pn for |n| � 1. The Fourier transform should look familiar 
(from problem set 2), but it’s easy enough to work out again: 

p̂(k) = 
∞ 
e−ikx p(x)dx 

1
−∞�� ∞ � 0 � 

= e−x(ik+1/b)dx + e x(−ik+1/b)dx
2b 0�	 � −∞
1 1 1 

= +
2	 1 + ibk 1 − ibk 

1 
= .

1 + (bk)2 

The cumulant generating function is 

� � kn 

ψ(k) = log p̂(k) = − log(1 + (bk)2) = 
∞ (−1)m

m 
(bk)2m 

≡ 
∞ (−i)

n

n

! 
cn

m=1 n=1 

which implies c2m+1 = 0 and 
(2m)!b2m 

c2m = . 
m 

The coefficients in the modified Kramers-Moyall expansion are then D̄ 
2m+1 = 0 and 

b2m 1¯ D2m = = . 
m m(log a)2m 

1.3 Log-linear plot 

The two diffusivities are 

D2(a) = 
a 

and D̄ 
2(b(a)) = 

1 
.

(1 − a)2	 (log a)2 

In the limit a → 1 the width of the distribution b = −1/ log a becomes much larger than the lattice 
spacing, and thus the continuum approximation should become exact, D2 ∼ D̄ 

2, which is easily 
verified. In the opposite limit, a 0, the decay length for the distribution is much less than the →
lattice spacing, and the two models should be very different. In fact, 

¯
D2 1

D2 

∼ 
a(log a)2 →∞ as a → 0.


These limits are also clear in figure 1. 
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Figure 1: A log-linear plot of D2(a) and D̄ 
2(b(a)). 

2 First passage of N random walks in two dimensions 

2.1 First passage position of a single walker 

Since the diffusivity is a scalar (isotropic process), the Green function for the x-component (marginal 
probability density, after integrating out the y-component) will describe a one-dimensional x diffu­
sion process with the same D, 

e−x2/4Dt 

G(x, t 0) = .| √
4πDt 

By symmetry, the x process plays no role in determining the first passage time, whose (Smirnov1) 
probability density will be same as for a one-dimensional y diffusion process with the same D, 

ae−a2/4Dt 

f(t|a) = −S�(t|a) = √
4πDt3 

where the survival probability is � � 
a 

S(t a) = erf .| √
4Dt 

The hitting probability density can be calculated as 

ε(x|a) = 
0 

∞ 
f(t|a)G(x, t|0)dt 

since this is an integral over all times t of the probability that the x-component is x given that first 
passage occurs at time t. As noted above, these events are independent, so the integrand is just a 

1 3There is a typo in the Exam 2, problem 2 solution from 2005: t should be t under the square root. However, it 
is correct in Lecture 16 2005 notes and was correct in lecture this year. 
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Figure 2: Plots of εN (x|a) for several different values of N , for the case when a = D = 1. The 
case of N = 1 is the Cauchy distribution, while the cases N > 1 are from numerical integration of 
equation 1. The substitution 1/t = − log α was employed to change the integral into one over a 
finite range 0 < α < 1, and the resulting expression was evaluated using Simpson’s rule. 

product of the two probabilities. The integral is easily evaluated: 

ε(x|a) = 
a ∞ 

e−(x2+a2)/4Dt dt 
4πD 0 t2 

1 a 
= 

π a2 + x2 

which is the same Cauchy distribution we obtained in lecture by conformal mapping. Note that 
�x2� = ∞ x2ε(x|a)dx = ∞.−∞ 

2.2 First passage position of the first of N independent walkers 

The probability that N independent walkers survive is just the product of the individual survival 
probabilities, SN (t) = S(t)N . Therefore, the PDF of the minimum first passage time is 

fN (t|a) = −
dt

d 
S(t)N = Nf(t|a)S(t)N−1 . 

The hitting probability of the first walker is given by the x diffusion process sampled at this time, 

εN (x|a) = 
0 

∞ 
fN (t|0)G(x, t|0). (1) 

It does not seem that this integral can be performed analytically, so some numerical integrations 
are shown in figure 2. 
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The variance of the hitting position is given by 

2
∞ 

�x � = x 2εN (x|0) dx �−∞ � 
= 

0 

∞ 
dt fN (t|a) 

∞ 
dxx2G(x, t|0) � −∞ 

= 
∞ 
dt fN (t|a) 2Dt. 

0 

For t →∞ we have f(t|a) ∝ t−3/2 , S(t) ∝ t−1/2 , fN (t|a) ∝ t−1−N/2, and thus the integrand decays 
like tfN (t|a) ∝ tN/2 . Therefore, the variance is finite only if N/2 > 1 ⇒ N > 2 ⇒ N ≥ 3. So, once 
again Nc = 3 is the magic number of walkers such that the first one will hit in a region of finite 
variance in space. This should come as no surprise, because this is the same critical number needed 
to have a finite mean first passage time for the first walker, as shown in lecture. 

3 First passage to a circle 

In the physical z plane, the walker is released at (x = a, y = 0) and hits the unit circle. We would 
like to map this domain with w = f(z) to the interior of the unit circle with the source at the origin 
in the mathematical w plane, where we know the complex potential is 

log w
Φ = .

2π 

We could choose a Möbius transformation with the constraints, f(a) = 0, f(1) = −1, f(−1) = 1, 
which yields 

f(z) = 
z − a

. 
az − 1

The complex potential in the z plane is therefore 

Φ = 
1

log 
� 
z − a 

� 

=
1 � 

log(z − a) − log(z − a−1) − log a 
� 

2π az − 1 2π 

which is clearly the sum of the source term and an image sink at (a−1 , 0) (and a constant). The 
hitting probability density is given by the normal electric field on the circle: 

ε(θ|a) = n̂ · �φ = −Re(e iθΦ�) �
1 1 

= Re 
1 − a−1e−iθ − 

1 − ae−iθ 

1 1 − a−1 cos θ 1 − a cos θ 
=

2π 1 − 2a−1 cos θ + a−2 − 
1 − 2a cos θ + a2 . 

Therefore, the 
ε(0) 

= 
� 
a + 1 

�2 

ε(π) a − 1 

which is nine for source at twice the radius (a = 2). 
The geometrical interpretation follows from the cumulative distribution function 

1 � � γ 
ψ = ImΦ = arg(z − a) − arg(z − a−1) = 

2π π 
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where γ is the angle formed at a point on the circle by drawing lines to the “charge” at z = a and 
its “image” at z = a−1 . The probability of hitting between angle θ1 and θ2 on the circles is just the 
difference of two such angles, subtended from each of the points to z = a and z = a−1: � θ2 

θ1 

ε(θ|a)dθ = 
γ2 

2
− 
π

γ1 
. 

For infinitessimal dθ = θ2 − θ1, we obtain the hitting probability density, 

1 dγ 
ε(θ|a) = 

2π dθ
. 


