Approximations using Dawson’s integral

(by Chris H. Rycroft.)

Consider a random walk following a fat-tailed distribution with PDF
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This PDF has zero mean and unit variance, but the “absolute moments” of the form (|x|™) diverge
for m > 3. Near the origin, the Fourier transform is not analytic, and has the expansion

The cumulant generating function has the form
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which we can use to find approximations after N steps. If we consider just the first term, we obtain
the Central Limit Theorem (CLT):
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However, if we include the next term, we find that

o, D"/ VIN)

V2rN 67T N2

where D(z) is Dawson’s integral, defined as
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Dawson’s integral satisfies D" (x) = 4(z% — 1) + (122 — 823) D(x), and it can be shown that D(z) ~
62~* as x — oco. The width of the central region is determined by the value of 2 where the Dawson
correction has a comparable size to the CLT. We find the width is /N log N which is not much
wider than the minimum required by the CLT, and much less than N3/4 when all the cumulants
are finite.

Simulations

Figure 1 shows a semi-log plot of the PDF. To compare the above predictions to simulation, we
must first find a way to simulate steps from this distribution. Unlike the Cauchy distribution, a
simple transformation can not be used in this case. Let X be a random variable with the one-sided

PDF 4
px(r) = ———~ for z > 0.
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Figure 1: Semi-log plot of the PDF under consideration.

If we consider the sequence of substitutions Z = X2, © = tan~! Z, ® = v/O then we find that ®
has PDF

Po(d) = —2—  for0< ¢ </a/2
/7 tan ¢?
Although this is a complicated function it is smooth over the given domain, and bounded between
0 and 4/+/m. To sample from this distribution, we choose random pairs (A4, B) where A is uniform
on [0,+/7/2], and B is uniform on [0,4//7]. If we keep sampling pairs until we find B < ps(A),
and then let ® = A, then ® will follow the above PDF. Transforming back allows us to find X.
Multiplying X by -1 with probability 1/2 lets us sample from the PDF we wish to study. This can

be coded efficiently in C using the function

double fatrand () {
double b;
while (usq QQ=xtan(b=usqQ*pi/2)>b);
b=sgrt(tan(b));return rand(Q%2==1?b :-b;
}

where usq() returns the square of a number uniformly distributed on [0, 1] and rand() returns a
random integer. Figure 2 shows four sample random walks from this distribution, and figures 3 to
6 show the accuracy of the Dawson correction for N = 3, N = 10, and N = 100.
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Figure 2: Four sample random walks using the PDF under consideration.
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Figure 3: Comparisons between the Central Limit Theorem with and without the Dawson correc-
tion, compared to simulations of 1.6 x 10! walks with N = 3 steps. Even in the central region, the
Dawson curve is a better fit to the data.
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Figure 4: A semi-log plot of the N = 3 data shows that the Dawson correction matches the tail of
the distribution to a high level of accuracy, although some small deviations are seen near x = 5.
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Figure 5: Comparisons between the Central Limit Theorem with and without the Dawson correc-
tion, compared to simulations of 1.6 x 10'° walks with N = 10 steps. Small deviations between the
Dawson curve and the simulated PDF are apparent.
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Figure 6: Comparisons between the Central Limit Theorem with and without the Dawson correc-
tion, compared to simulations of 1.6 x 10° walks with N = 100 steps. The Dawson curve matches

the simulated data to a high level of accuracy.



