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Lecture 1: Introduction to Random Walks and Diffusion 

Scribe: Chris H. Rycroft (and Martin Z. Bazant) 

Department of Mathematics, MIT 

February 1, 2005 

History 

The term “random walk” was originally proposed by Karl Pearson in 19051 . In a letter to Na­
ture, he gave a simple model to describe a mosquito infestation in a forest. At each time step, a 
single mosquito moves a fixed length a, at a randomly chosen angle. Pearson wanted to know the 
distribution of the mosquitos after many steps had been taken. 

The letter was answered by Lord Rayleigh, who had already solved a more general form of 
this problem in 1880, in the context of sound waves in heterogeneous materials. Modeling a sound 
wave traveling through the material can be thought of as summing up a sequence of random wave­
vectors k of constant amplitude but random phase: sound waves in the material have roughly 
constant wavelength, but their directions are altered at scattering sites within the material. 

We wish to find the probability density function of the sound waves after many steps have been 
taken. We let PN (R)dR be the probability of traveling a distance between R and R + dR in N 
steps. For steps of unit length, Lord Rayleigh showed that as N →∞, 

2R
e−R2/N PN (R) ∼ . (1)

N 

This function is shown in figure 1 for several values of N . We see that the expected distance traveled 
scales according to the square root of the number of steps, R2 ∼ N , which is typical of “diffusion” 
phenomena. 

Around the same time, the theory of random walks was also developed by Louis Bachelier in 
his truly remarkable doctoral thesis, La Th´ eculation, published in 1900. Bachelier eorie de la Sp´
proposed the random walk as the fundamental model for financial time series (e.g. stock ticks), 
many decades before this idea became the basis for modern theoretical finance. Bachelier also 
was apparently the first to see the connection between discrete random walks and the continuous 
diffusion (or heat) equation, which is a major theme of this class, reflected in its title. 

It is curious that in the same year as Pearson’s letter, Albert Einstein also published his seminal 
paper on Brownian motion – the complicated path of a large dust particle in air – which he modeled 
as a random walk, driven by collisions with gas molecules. Einstein did not seem to be aware of 
the related work of Rayleigh and Bachelier, and he focused on a different issue: the calculation of 
the diffusion coefficient in terms of the viscosity and temperature of the gas (which we will study 
later in the class). Similar theoretical ideas were also published independently by Smoluchowski 

See B. Hughes, Random Walks and Random Environments, Vol. I, Sec. 2.1 (Oxford, 1995), for excerpts and an 
entertaining historical discussion. 
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Figure 1: Rayleigh’s asymptotic approximation for in Pearson’s random walk for several 
large values of 

in 1906. The random­walk theory of Brownian motion had an enormous impact, because it gave 
strong evidence for discrete particles (“atoms”) at a time when most scientists still believed that 
matter was a continuum. 

As its historical origins demonstrate, the concept of the random walk has incredibly broad 
applicability, and today, a century later, it is nearly ubiquitous in science and engineering. 

Simple Analysis of Isotropic Random Walks 

Computer simulations of Pearson’s random walk, as in Fig. 3, demonstrate that Lord Rayleigh’s 
result rather accurate in describing the distribution of walkers at long times, roughly beyond 100 
steps. It is impressive how the complicated collection of random walkers tends toward a simple, 
smooth distribution, at least in the central region. 

We now present a simple derivation of a generalization of Lord Rayleigh’s result, which will be 
covered again in more detail in subsequent lectures. Consider a random walker, who initially starts 
at the origin in dimensions. At each step, the walker moves by an amount Δ , chosen from a 
probability distribution ). For this derivation, which shall consider the case of independent, 
identically distributed (IID) steps, so that ). Furthermore, we shall assume that the 
steps are isotropic, so that ) is a function of the radial distance only. This condition also 
automatically eliminates any drift, so that 

be the position of the walker after steps, and let ) be the associated probability 
density function (PDF). For IID displacements, we have the following recursion for the PDF: 

In one dimension ( 1), this is Bachelier’s Equation. The key assumption is the independence 
of the steps, which allows the probability of a transition from in the th step to be 
factored into the two terms in the integrand. 
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Figure 2: The positions of 2000 independent Figure 3: A normalized histogram of the dis­
Pearson random walks released from the ori­ tances from the origin, RN , in Fig. 2 compared 
gin, after N = 2000 steps of length a = 0.01. to Rayleigh’s asymptotic result, Eq. (1). 

Starting from Eq. (2), we can formally take the continuum limit to quickly arrive at Rayleigh’s 
solution (1) to Pearson’s problem. In subsequent lectures we will gain a better understanding of 
this approximation, but here we just give simple arguments. As N → ∞, PN (r) varies on length 
scales which are much larger than a typical r, and therefore we Taylor expand inside the integral 
to obtain 

1 
PN+1(R) = p(r) PN (R)− r · �PN (R) +

2
r · ��PN · r + . . . ddr 

� � ∂2PN1 
= PN (R)− 0 + �rirj�

∂Ri∂Rj 
+ . . . 

2 
i j 

= PN (R) + 
�r 

2
·
d 

r��2PN (R) + . . . . 

We assume that steps are taken at intervals of Δt, and defining time by t = NΔt we obtain 

rPN+1(R)− PN (R) 2 

=
2dΔt

�2PN + . . . . 
Δt 

As N →∞, the limiting distribution ρ(R, t), defined by PN (R) = ρ(R, NΔt), satisfies 

∂ρ 
= D�2ρ 

∂t 

where D = r2 /2dΔt, which is the diffusion equation. Since the walker starts from the origin, we 
have the initial condition ρ(R, 0) = δ(R). To solve this partial differential equation, we make use 
of the Fourier Transform, defined for this class to be 

ρ̂(k, t) = e−ik·xρ(x, t) ddx 

1 
ρ(x, t) = e ik·xρ̂(k, t) ddk.

(2π)d 
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Thus we obtain the ordinary differential equation 

∂ρ̂
= −Dk2ρ̂

∂t 

which has solution 
e−Dk2t ˆ e−Dk2tρ̂(k, t) = ρ(k, 0) = . 

Taking the inverse Fourier Transform gives 

e−R2/4Dt 

ρ(R, t) = . 
(4πDt)d/2 

Thus in the corresponding discrete problem, as N →∞, 

2
e−dR2/2�r N 

PN (R) ∼ 
(2π �r2�N/d

�

)d/2 
. (3) 

This is the long time limit of PN (R) for an isotropic random walk in d dimensions. The PDF for the 
position tends to a Gaussian (or normal) distribution, whose width depends only on the variance 
of the individual displacements. Our derivation predicts the same asymptotic result for any PDF 
so long as r2 exists. 

For an isotropic walk, we can easily calculate the PDF of the distance R from the origin via 

PN (R) = AdR
d−1PN (R) 

where Ad is the surface area of the unit sphere in d dimensions (A1 = 1, A2 = 2π, A3 = 4π,...). For 
Pearson’s problem, we have r2 = a2 and d = 2, so Equation (3) gives the asymptotic result: 

e−R2/a2N 

PN (R) ∼ 
πa2N 

2R
e−R2/a2NPN (R) ∼ 

a2N 

which agrees with Lord Rayleigh’s solution, Eq. (1), for a = 1. 

More General Situations 

Normal Diffusion 

As our simple derivation suggests, the statistical properties of random walks tend toward universal 
distributions after large numbers of steps. In the case of the PDF for the final position, our result 
for isotropic random walks is a multi­dimensional generalization of the Central Limit Theorem 
(CLT) for sums of independent, identically distributed random variables. As long as a finite second 
moment r2 exists for the random displacements, the asymptotic form of PN (R) is given by Eq. (3). 
An important question, which we will address in the next lecture, is how quickly the asymptotic 
form is approached and for what values of R it is a good approximation. 

Note the “square­root scaling” of the width of the PDF, which grows like 

r �N. R ∝ � 2
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Figure 4: Two thousand steps of a random Figure 5: Two thousand steps of Pearson’s 
walk based on the Cauchy distribution. random walk, with a = 0.01. 

which is characteristic of spreading by “normal diffusion”. More generally, we will see that the 
variance of the position is given by 

Var(RN ) = NVar(�r). 

for independent, identically distributed random displacements. 

Anomalous Diffusion 

When the assumptions of the CLT break down, random walks can exhibit rather different behavior. 
For example, the limiting distribution for the position may not be Gaussian, and the scaling of its 
width, 

R ∝ Nν , 

is generally “anomalous” with ν =� 1/2. The second part of this class is devoted to various cases of 
anomalous diffusion. 

One way to violate the CLT with IID displacements is via “fat­tailed” probability distributions, 
which assign sufficient probability to very large steps that the variance is infinite. An example is 
PDF for a Cauchy random variable, 

b 
p(x) = 

π(b2 + x2)
. 

Since the probability density function decays like x−2 as x →∞, the variance is infinite. Figure 4 
shows an example of a two dimensional, isotropic random walk, where the distances of the steps are 
chosen from a Cauchy distribution. We see that the walk mostly takes small steps, but occasionally 
makes very large jumps, comparable to the total displacement. This is rather different from the 
case of Pearson’s walk, shown in Figure 5, where the step size is constant and normal diffusion 
occurs. 
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Other ways to achieve anomalous diffusion include highly non­uniform step distributions, strong 
correlations between steps, and interactions between multiple random walkers. In such cases, the 
continuum limit is more subtle and leads to various generalizations of the diffusion equation. 


