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Until now we have focused on “typical” outcomes for a random walk in the “central region” of the 
probability distribution, which contains all of its weight as the number of steps N tends to ∞. For any 
finite N , now matter how large, however, there is always some chance of finding the random walk outside 
the central region. Such “extreme events” are not controlled by the Central Limit Theorem, and intead their 
probabilities depend sensitively on the “tails” of the step distribution. 

There is a special class of distributions for which the probabilities of extreme events follow universal law 
– those with “fat” power­law tails, discussed in the previous lecture. In the first part of this lecture, we 
explain intuitively why, in a random walk with fat­tailed IID steps, the power­law tail is preserved in the 
final distribution. We also sketch a proof of the additivity of the power­law tail amplitude, analogous to a 
(divergent) cumulant, by investigating the singularity in the characteristic function. 

In the second part, we move on to give a brief exposition of Laplace’s method and its generalization to the 
complex plane (the steepest­descent or saddle­point method). We show how the latter can be used to obtain 
uniformly valid asymptotic approximations for the PDF of a random walk, with an analytic characteristic 
function. The approximation is valid even far outside the central region, provided that N is sufficiently large 
(although, as we will see in the next lecture, it is not always a good approximation for small N). 

1 Additivity of power­law tail amplitudes 

1.1 Intuitive explanation 

Consider a probability distribution function (PDF) p(x) with 

A 
as x (1)p(|x|) ∼

|x|1+α 
| | → ∞ 

but still assume �x2� < ∞ so that the central limit theorem (CLT) applies. In the previous lecture, we 
showed that the ”tail amplitude” is additive. In other words, the PDF the random walk with independent 
identical steps with PDF p has the PDF 

A 
PN ( x ) ∼ N 

| |1+α 
as x| |

x
| | → ∞ 

This is also true for the cumulative probability distribution (CDF), i.e. 

∞ ∞
Pr(XN > y) = PN (x�)dx� 

y→∞
∼ N p(x�)dx� = N Pr(x > y) 

y y 

or, in case we have non­identical but still independent steps, 

N

Pr(XN > y) 
y→∞
∼ Pr(xn > y) 

n=1 

1 



� 

M. Z. Bazant – 18.366 Random Walks and Diffusion – Lecture 6 2 

This fact can be interpreted intuitively as follows: When there is a ”fat tail” in the displacement PDF p(x), 
then the tail of the PN (x) for the sum XN , is dominated by a single extreme event. The probability for 
such an event to occur in the course of N steps is approximately given by adding the (nearly independent) 
probabilities that each individual step is large enough to reach the extreme value. Of course, this argument 
is only asymptotically valid, for sufficiently large x. 

1.2 A “high order” Tauberian theorem 

In the previous lecture, we showed that the additivity of power­law tails follows if the leading singular term 
in the cumulant­generating function, ψ(k) = log p̂(k), as k → 0, has a coefficient proportional to the tail 
amplitude of p(x), as x →∞. We made a conjecture along the lines of the following “theorem” and showed 
that it is satisfied by several examples. We leave a rigorous proof (or disproof and revision) to the reader, 
and below we sketch a partial derivation. 

Conjecture. Consider a symmetric PDF p(x) with a finite variance, σ2, and let ψ(k) = log p̂(k) be its 
cumulant genarating function. Then, for α > 2 (not an even integer1): 

A 
p(x) ∼ 

x1+α 
, as x →∞ (2) 

if and only if 
ψ(k) = log p̂(k) ∼ f(k) + g(k), as k → 0, (3) 

where 
σ2k2 

2 
, is analytic, (4)f(k) ∼ − 

g(k) ∼ c|k|α is singular, and (5) 
Aπ 

c = 
Γ(α+ 1) sin(πα/2)

. (6) 

Results of this type, which relate the large x power­law decay of a function to the small k singular 
power­law behavior of its Fourier (or Laplace) or Laplace transform, are called “Tauberian theorems”. For 
a thorough introduction to Tauberian theorems for the Laplace transform in the context of continuous­
time random walks (also discussed later in this class), see the excellent book of George Weiss [6]. Some 
Tauberian theorems are also discussed by Barry Hughes [3], in the context of Lévy distributions, which are 
also in the class notes [4]. These results, however, focus on the case of an infinite variance, 0 < α < 2, where 
ψ(k) = log p̂(k) is singular at leading order, but here we claim a similar “high order” result for the case of a 
finite variance (α > 2), where ψ(k) ∼ f(k) is analytic at leading order. Such results may also appear in the 
literature, but are beyond the scope of this class (and the knowledge of the professor). 

1.3 Sketch of the Proof 

We consider only the reverse implication (3) ⇒ (2) and begin with the definition: 

dk 
p(x) = 

∞ 

e ikx e ψ(k) (7)
2π−∞ 

1If α > 2 is a positive even integer, then the leading order behavior of g(k) in Eq. (5) may contain extra logarithmic factors. 
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For p̂(k) = eψ(k) takes its maximum at k = 0, and typically drops quickly as k gets away from the origin, 
and the integrand of (7) does not have any stationary points (see [1] or [2] for details) the main contribution 
to the integral comes from a neighborhood of k = 0. We therefore expand ψ around k = 0, 

k2 

ψ(k) = − 
2

+ c k α + h(k)| |

where h(k) contains the higher order terms in k, then the integral takes to form 

p(x) ∼ e ikx e−k
2/2 e c|k|

α h(k) dk e 
2π �−� 

dk∞ 

e ikx e−k
2/2(1 + c|k|α + ...)(1 + h(k) + ...)∼ 

2π−∞ 

We now remember our earlier calculations, namely, for integer m, we have 

2 2 21 1ikx−k2/2km 
dk 

= √
2π
Hm(x)e−x /2 

x→∞
∼ √

2π
x m e−x /2 = m e−x /2)e O(x

2π 

and it can also be shown that for any number α > −1, 

1 /2 α dk 
∞ 

e ikx−k
2/2 k α dk = 

∞ 

cos(kx)e−k
2
|k|

2π
| |

2π π 0−∞ 

Γ(α + 1) sin(π(α + 1)/2) 
πx1+αx→∞

∼ 

We can verify this for the odd integer α = m ≥ 3, by using the results from the previous lecture 

dm x∞ 

cos(kx)km e−k
2/2dk = − 

dxm 
[
√

2D(√
2
)] 

0 

Keeping in mind that the Dawson integral has 

1 
2z 

D(z) 
z→∞
∼ 

we obtain 

dm 1 m!∞ 

cos(kx)km e−k
2/2dk 

x→∞
∼ − ( ) =

(−1)m+1

xm+1dxm x 

sin(πm/2)Γ(m + 1) 
0 

= 
xm+1 

2 Uniform Approximations from Saddle Point Asymptotics 

For a random walk with IID steps with ψ(k), we have 

dk 
PN (x) = 

∞ 

e ikx e Nψ(k) (8)
2π−∞ 

In case ψ(k) is an analytic function, this integral may be evaluated accurately by making use of the saddle 
point method. In the coming subsections, we give a brief introduction to the saddle point method and show 
how to use it to obtain accurate approximations to the integral (8). For a detailed treatment of the saddle 
point method, we refer the reader to [1] and [2]. For nice pictures, see also [5]. 

Note that it is not always possible to make use of saddle point method, because ψ(k) may not be analytic, 
say, due to a fat tail in the PDF p(x), as we have demonstrated in the previous section. 
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2.1 The Laplace’s method 

Here we first give a brief exposition of the Laplace’s method. The Laplace’s method is used to find the 
asymptotics of the integrals of the form 

e−Nψ(k)dk (9) 

. The idea is that as N gets larger and larger, the dominant contribution to the integral (9) comes as N →∞
typically from a single point, which is the point k0 at which ψ(k) attains its minimum. This is because as 

, the value of the integrand outside k0 becomes exponentially small compared to the value of the N → ∞
integrand at k0. 

That being said, the value of the integral (9) depends on the behaviour of the function ψ(k) in a small 
neighborhood of the point k0. We can use the Taylor Series of ψ(k) expanded around k0 in the calculation of 
the integral (9) without incurring much error. To summarize, the Laplace’s method has the following steps. 

1. Locate the minimum of the function ψ(k). Argue that the dominant contribution of the integral (9) 
comes from a neighborhood of this point in the large N limit. In other words, write down � b � k0+� 

e−Nψ(k)dk ≈ e−Nψ(k)dk (10) 
a k0−� 

for a small number � > 0. Here, we are assuming that k0 is an interior point of [a, b], but the case k0 is 
an end point can be handled similarly. 

2. Argue that, for � > 0 small, the function ψ(k) can be approximated by its Taylor expansion at k0, in 
symbols


1

ψ(k) = ψ(k0) + (k − k0)ψ�(k0) +

2
(k − k0)2ψ��(k0) + O((k − k0)3) 

Note that in case k0 is an interior point, we have ψ�(k0) = 0, and typically ψ��(k0) =� 0. Let’s assume for 
simplicity that this is the case. Plug this series into the integral on the right hand side of (10). Obtain � b � k0+� 

1 
e−Nψ(k)dk ≈ e−Nψ(k0) e− 2N(k−k0)2ψ�� (k0)dk (11) 

a k0−� 

3. Argue that, since the integrals 

∞ 
1 1 

e− 2N(k−k0)2ψ�� (k0)dk, 

� k0−� 
e− 2N(k−k0)2ψ�� (k0)dk 

k0+� −∞ 

are exponentially small compared to the integral on the right hand side of (11), we can write � b � k0+� 
1 

e−Nψ(k)dk ≈ e−Nψ(k0) e− 2N(k−k0)2ψ�� (k0)dk 
a �k0−� 

1 ≈ e−Nψ(k0) 
∞ 

e− 2N(k−k0)2ψ�� (k0)dk (12) 
−∞ 

4. Now the rightmost integral in (12) can be found using the fact that 

∞ 

e−x 
2 
dx = 

√
π 

−∞ 

All in all, we obtain � b 
�


2π

e−Nψ(k)dk ≈ e−Nψ(k0) 

Nψ��(k0) 
as N →∞ 

a 
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In case ψ��(k0) = 0, the steps 1− 3 can still be repeated, but at step 4 one will need to know the value of 
one of the integrals 

∞	
n 

e−x dx 
−∞ 

which can be evaluated in terms of gamma functions. For reference, 

∞ 
3 Γ(1/3) 

e−x dx = 
3−∞ 

2.2 The Saddle Point Method 

The saddle point method, which is basically an extension of the Laplace method to the integrals over the 
contours in the complex plane, deals with the integrals of the type 

e−Nψ(z)dz = e−N Re ψ(z)e−iN Im ψ(z)dz (13) 
C C 

where now ψ(z) is a complex valued analytic function of the complex variable z. By the same token as in 
the previous section, the dominant contribution to the integral in the N →∞ limit comes from the point z1 
where |e−ψ(z)| = e− Re ψ(z) attains its maximum on the path C. While this is true, there may still be large 
cancellations within the part of the path C containing z1, due to the factor e−iN Im ψ(z) in the integrand. To 
overcome this issue, we will invoke the Cauchy’s theorem and deform the path C of integration to a new one 
C � such that 

(A) Along C �, Re ψ(z) attains its minimum at a point z0, and grows quickly as we move away from z0 along 
C � 

(B)	 In at least a small section of C � containing z0, Im ψ(z) stays constant so that there are no non­trivial 
cancellations 

Seen in the light of the previous section on Laplace’s method, the integral along C � has its dominant 
contribution from a neighborhood of the point z0 along C �, and can be evaluated by repeating the steps 1­4 
of the previous section. 

On the other hand, a point z0 which satisfies the conditions given in (A) and (B) must satisfy ψ�(z0) = 0. 
The reason is follows: Because of (A), the derivative of Re ψ(z) at z0 taken along the curve C � is zero. 
Because of (B), the derivative of Im ψ(z) at z0 taken along the curve C � is zero. Combining these, we see 
that the derivative of ψ(z) at z0 taken along the curve C � is zero. But since ψ(z) is analytic, this means 
ψ�(z0) = 0. 

Conversely, it is true that if ψ�(z0) = 0, then a path C � which passes through the point z0 and satisfying 
the properties in (A) and (B) can be found. In this case, C � is called the path of steepest descent for the 
integrand in (13). 

A point z0 for which ψ�(z0) = 0 is called a saddle point. Because ψ is analytic, the real valued functions 
|ψ|, Re ψ, Im ψ cannot have any extrema in the interior of a region in the complex plane. Therefore ψ�(z0) = 0 
implies that the graph of the those functions a saddle­type near the point z0, justifying the terminology. 

We summarize the procedure for the saddle point for the integral in (13) method as follows: 

1. Locate saddle points by solving ψ�(z0) = 0. 

2. Investigate how the original path C can be deformed so that it passes through some of the saddle points 
along their steepest descent paths (i.e. paths over which Im ψ(z) = constant) at least locally. In other 
words, find the saddle points which ”contribute” to the integral. 



� � 

M. Z. Bazant – 18.366 Random Walks and Diffusion – Lecture 6 6 

3. Go through the steps given in the previous section on Laplace’s method. Assuming that there is a 
single saddle point z0 which contributes, and ψ��(z0) = 0, these steps are briefly 

e−Nψ(z)dz ∼ e−Nψ(z0) e−N
1 
2ψ

�� (z0)(z−z0)2 dz 
C �C� 

1 ∼ e−Nψ(z0) 
∞ 

e−N
1 
2 |ψ

�� (z0) t
2

2 i argψ
�� (z0)dt| e− 

−∞ � 
1 

= e−Nψ(z0)e− 2 i argψ
�� (z0) 

2π 
N |ψ��(z0)| 

1
by making the change of variables t = e 2 i arg ψ

�� (z0)(z − z0) in the second step. Indeed, when t is real, 

1
Im(ψ(z)) ∼ Im(ψ(z0) + ψ��(z0)(z − z0)2)2

1 1 
= Im ψ(z0) + Im{ ψ��(z0)[e− 2 i argψ

�� (z0)t]2
2

} 

= Im ψ(z0) = constant 

and 

1
Re(ψ(z)) ∼ Re(ψ(z0) + ψ��(z0)(z − z0)2)2

1 
= Re ψ(z0) + Re{ 

1 
ψ��(z0)[e− 2 i argψ

�� (z0)t]2
2

} 

1 2= Re ψ(z0) +
2
|ψ��(z0) t|

hence t being real corresponds to the direction along which ψ experiences the steepest descent. 

2.3 Application to the Random Walks 

We will obtain asymptotic approximations that are valid outside the central region (more precisely, valid 
when x = O(N) and as N →∞) for random walks by making use of the saddle point method. To this end, 
we start with � � 

PN (x) = 
∞ 

e ikx e Nψ(k) dk e−Nf(k,ξ) dk = 
2π 2π−∞ 

where 

f(k, ξ) = −ikξ + ψ(k) 
x 

ξ = 
N 

xWe then make use of the saddle point method and obtain an approximation for N → ∞, ξ = N = O(1) 
considered fixed. Therefore this approximation is valid for x = O(N). The central region, which is usually 

1confined to x = O(
√
N), can be recovered by considering ξ = O(√

N
). 
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