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1 Introduction 

A probability density function p(x) is said to have a power-law tail if 

A 
p(x) ∼ 

x
, |x| → ∞ (1) 

| |1+α 

for some real, positive constants A and α. We call A the power-law tail amplitude and α the 
power-law tail exponent. Note that in general A and α might be different for x +∞ and→ 
x → −∞; however, we will only be considering symmetric density functions. 

Clearly α must be positive in order for 
+∞ 

p(x) dx = 1 . 
−∞ 

Similarly, the nth moment exists if and only if n < α. 
The nature of a PDF’s power-law tails is strongly connected to the form of the PDF’s 

characteristic function: 
Conjecture (M. Bazant): Suppose p(x) is a symmetric, continuous probability density 

function. Then p(x) has a power-law tail with non-even-integral exponent α and amplitude 
A if and only if its cumulant generating function may be written 

ψ(k) = f(k) + g(k) (2) 

where f is analytic at 0 and has the Taylor series 
∞

c2n(ik)2n 

f(k) = , (3) 
(2n)!

n=1 

and g is singular at 0 and has the asymptotic representation 

g(k) ∼ cα|k|α , k → 0 (4) 

where 
Aπ 

cα = −
Γ(α + 1) sin(απ/2) 

. (5) 
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1.1 Consequences 

We define the coefficients c2n of the Taylor series expansion for f to be generalized cumulants. 
For 2n < α, we know that c2n is the order-2n cumulant of the PDF. For 2n > α, however, the 
coefficients may exist despite the fact that the corresponding cumulants of the PDF don’t 
exist. Similarly, we call A a diverging cumulant. 

Suppose p(x) is the PDF for each of the IID steps of a random walk, and let PN (x) 
be the PDF for the position of the walker after N steps. Even if the Conjecture is false, 
the cumulant generating function ψN (k) for PN (x) must equal Nψ(k). In particular, ψN (k) 
has an analytic part of the form Nf(k) and a singular part of the form Ng(k). Regardless 
of their interpretation, then, the generalized cumulants and the diverging cumulants are 
additive (thus justifying the name cumulants). Since the Conjecture is an “if-and-only-if” 
statement, it would imply that PN (x) also has power-law tails with the same exponent as 
p(x) and with amplitude NA. Equivalently, PN (x) ∼ Np(x) as |x| → ∞. 

2 Motivation 

We do not have a complete proof of the Conjecture (though it might be a known result in 
the field of Tauberian theorems). We do, however, have evidence in its favor. 

2.1 Heuristics 

In a random walk whose step lengths are bounded by some constant l, arriving at a position 
x = O(Nl) after N steps can only be achieved by walking nearly the maximum distance 
to the right on nearly every step. This also holds (at least with probability exponentially 
approaching 1) for walks whose steps aren’t bounded but for which the probability of large 
steps is exponentially small. 

In a random walk whose step distribution has power-law tails, however, this isn’t quite 
true. During computer simulations, such walks typically take many small steps interspersed 
with infrequent but very large steps. If a walker ends up far from the origin at time N , it 
is much more likely that it took a single large step than many small but coordinated steps. 
The probability that the walker is some very large distance from the origin at step N should 
therefore approximately equal the probability that one of its N steps was similarly large. 
We consequently expect PN (x) ∼ Np(x) as |x| → ∞. 

2.2 Examples 

2.2.1 Cauchy Distribution 

The Cauchy distribution is defined by 

1 1 
p(x) = . 

π 1 + x2 
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It clearly has power-law tails with amplitude A = 1/π and exponent α = 1. Because α = 1, 
this distribution has no well-defined moments (not even a mean). 

The characteristic function is 
p̂(k) = e−|k| , 

so the cumulant generating function is 

ψ(k) = −|k| . 

This clearly satisfies the Conjecture. 

2.2.2 Inverse-Quartic Distributions 

The distribution defined by √
2 1 

p(x) = 
π 1 + x4 

has power-law tails with amplitude A = 
√

2/π and exponent α = 3. The characteristic 
function is � � 

p̂(k) = e−|k|/
√

2 cos(k/
√

2) + sin(|k|/
√

2) , 

so the cumulant generating function is equal to its power series 

1 
√

2 1

ψ(k) = −

2 
k2 +

6 
|k|3 − 

6 
k4 + · · · .


Similarly, the Student’s t-distribution defined by


2/π 
p(x) = 

(1 + x2)2 

has characteristic function 
p̂(k) = e−|k|(1 + |k|) . 

Its cumulant generating function is equal to its power series 

ψ(k) = − 
1

2 
k2 + 

2

6
|k|3 − 

1

4 
k4 + · · · .


The Conjecture is satisfied in both cases.


3 Asymptotic Analysis 

In the examples above, we started with PDFs that have power-law tails, and we showed 
that their cumulant generating functions must be of the form given by the Conjecture. In 
this section, we assume that the cumulant generating function for p(x) is of the Conjectured 
form with α > 2, and then find that for large N , PN (x) has the expected power-law tails. 
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Since p̂(k) and PN (x) are both even functions, 

+∞ dk 
PN (x) = e ikx p̂(k)N 

2π−∞� 
1 +∞ 

= cos(kx)p̂(k)N dk 
2π �	 −∞ 

1 +∞ 

= cos(kx)p̂(k)N dk .	 (6) 
π 0 

The above expression is exact. Since |p̂(k)| ≤ 1 for all real k and since p̂(k = 0) = 1, 
we intuitively expect the integral 6 to be dominated by its behavior near k = 0 and for 
Laplace’s method to be directly applicable. However, two problems can arise in getting 
global asymptotic information from the above: First, a generic characteristic function may 
approach or even reach |p̂(k)| = 1 for some values of k =� 0. Second, we have to make 
sure that every error made during Laplace’s approximations are small even when x is large 
relative to N . 

With enough care, we can apply Laplace’s method as long as we “restrict” ourselves to 
values of x which grow at most polynomially in N : we shrink the upper limit of integration 
to something near 0; substitute in the asymptotic expansion for ψ(k) near k = 0; keep 
the cos(kx) and exp(−Nσ2k2/2) terms and Taylor-expand the other exponentials; and then 
re-raise the upper limit of integration to ∞. This yields (see Appendix A for tedious details): 

1 ∞	 � � 
PN (x) ∼ 

π 0 
cos(kx) exp(−Nσ2k2/2) 1 + (higher k2n terms) dk � (7) 

1 ∞ 

+ 
π 0 

cos(kx) exp(−Nσ2k2/2) [Ncαk
α] dk . 

For clarity and convenience, let φ(z) be the Gaussian density function with mean 0 and 
variance 1, and define φN (z) ≡ σ

√
NPN (zσ

√
N) to be the “normalized version” of PN . 

Define the new variables w ≡ σ
√
Nk, z ≡ x/σ

√
N , and λα ≡ cα/σα . Then equation 7 

becomes 

φN (z) ∼ 
π 
1 

0 

∞ 

cos(wz)e−w2/2 
� 
1 + (higher w 2n terms) 

� 
dw 

λα 
� ∞ 

2/2 
(8) 

+	 cos(wz)e−w w α dw . 
πNα/2−1

0 

Now define	 � 
Fβ (z) ≡ 

π 
1 

0 

∞ 

cos(wz)e−w2/2 w β dw .	 (9) 

Every term in equation 8 is of this form: the first integral is a sum of multiples of F2n(z) for 
integral n, and the second integral is a multiple of Fα(z). These integrals are evaluated in 
closed form in Appendix B. Substituting in the known values of F2n(z), equation 8 becomes 

λα
φN (z) ∼ φ(z) [1 + (higher-order Hermite terms)] + 

Nα/2−1 
Fα(z) . (10) 
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Thus we see that φN (z) has the usual form described by the Central Limit Theorem 
with correction terms, but now there is an additional correction proportional to Fα(z). 
This additional correction term decreases algebraically, whereas φ(z) decreases exponentially. 
This has important consequences for the asymptotic behavior of φN (z). 

First, we have seen that when the characteristic function is analytic, the width of the 
central region is not Δx = O(

√
N), but rather scales like some higher power of N . In this 

case, however, the Fα(z) correction is dominated by the first-order term if and only if 

|z|−(α+1)N−(α/2−1) � e−z2/2 . 

Taking logarithms, this requirement becomes 

−2(α + 1) log |z| + z 2 � (α − 2) log N . 

Finally, noting that log |z| � z2 for large |z|, we require 

z 2 � (α − 2) log N . 

Therefore the central region is now of width 

Δx = O N log N . 

It is only slightly wider than nominal (Δx = O(
√
N)), and is much smaller than it would 

be if the cumulant generating function had been analytic. 
Another consequence of the slow decay of Fα(z) is that this term provides the dominant 

behavior in the tails. Converting back to the original variables, this means that 

cαΓ(α + 1) sin(απ/2) N 
, x

1+α 
PN (x) ∼ − 

π |x|
| | → ∞. 

Since we are assuming that cα is of the Conjectured form (equation 5), then in fact 

NA 
, x . (11) PN (x) ∼ |x|1+α 
| | → ∞ 

That is, if the step distribution’s characteristic function is of the Conjectured form, then 
PN (x) must have the corresponding fat tails. 

Finally, see Chris Rycroft’s handout for an example of how crucial the Fα(z) correction 
term can be even for small N and x. 

A Why the Asymptotics are (Nearly) Global 

We still need to justify the move from equation 6 to equation 7. To do this, we follow 
the standard steps for Laplace’s method: shrink the interval of integration, substitute in 
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the small-k asymptotic expansions of the integrand and throw out high-order terms, then 
re-enlarge the interval. During each approximation step, we must make sure that only sub­
dominant errors are being made, and we must determine which values of x allow for such 
sub-dominance. 

The first step (reducing the integration interval) requires a bit more knowledge of the 
behavior of p̂(k). Since it is the Fourier transform of a probability density function, we 
know that |p̂(k)| ≤ 1 for all real k. Since we’re assuming that p(x) is continuous, the 
Riemann-Lebesgue lemma guarantees that |p̂(k)| → 0 as |k| → ∞. Therefore |p̂(k)| is 
bounded away from 1 for sufficiently large k, and by a relatively simple theorem about 
characteristic functions (Theorem 4.1.2 from [2]), |p̂(k)| must therefore be bounded away 
from 1 everywhere away from k = 0. More precisely, for all � > 0 there exists a δ > 0 such 
that |p̂(k)| < (1 − δ) ∀|k| > �. 

Given this information, it is clear that the error made in approximating 6 by 

1 
cos(kx)p̂(k)N dk (12) 

π 0 

decreases with N like (1 − δ)N , regardless of the magnitude of x. 

Now that we are restricted to a small neighborhood of k = 0, we can substitute in the 
asymptotic expression for ψ(k): 

1 
PN (x) ∼ 

π 0 
cos(kx)p̂(k)N dk


1 
= cos(kx)e Nf(k)eNg(k) dk 
π 0 � � 

� � � 

∼ 
π 
1 

cos(kx) exp −Nσ2k2/2 + N 
∞

(−
(2

1)

n

n

)! 
c2n 

k2n exp (Ncαk
α) dk . 

0 n=2 

Here we have neglected higher terms in the asymptotic expansion of g(k) since such terms 
contribute sub-dominantly to the integral. This is intuitively clear since � is small, but it 
does require some justification (see [1] for a rigorous discussion). We will have to wait until 
later to see how these neglected terms affect our freedom to choose x. 

Since � is small and α > 2, the dominant term in the exponents of the above integral is 
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−Nσ2k2/2. We therefore Taylor-expand the other exponentials: 

1 � �

PN (x) ∼ 

π 0 
cos(kx) exp −Nσ2k2/2


1 + (higher k2n terms) 

[1 + Ncαk
α + (higher kmα terms)] dk 

1 � � 
cos(kx) exp(−Nσ2k2/2) 1 + (higher k2n terms) dk∼ 

π 0� �1 
+ 
π 0 

cos(kx) exp(−Nσ2k2/2) [Ncαk
α] dk 

1 � � 
+ 
π 0 

cos(kx) exp(−Nσ2k2/2) (higher kmα+2n terms) dk 

Again, we neglect terms involving higher powers of k. Therefore 

1 � � 
PN (x) ∼ 

π 0 
cos(kx) exp(−Nσ2k2/2) 1 + (higher k2n terms) dk � � (13) 

1 
+ 
π 0 

cos(kx) exp(−Nσ2k2/2) [Ncαk
α] dk . 

Finally, we must re-enlarge the interval of integration. Each term in the integrands 
above is of the form kβ e−Nk2 

. Though such terms obviously decrease exponentially in N , 
they are actually equal to 0 at k = 0 (except when β = 0). However, for any fixed �, N may 
be increased sufficiently for the decreasing exponential factor to dominate the increasing 
polynomial factor for k > �. Therefore we may enlarge the upper limit of integration to 
∞, incurring only an exponentially small error in N as N increases. Moreover, this is true 
regardless of the magnitude of x. This yields: 

1 ∞ � � 
PN (x) ∼ 

π 0 
cos(kx) exp(−Nσ2k2/2) 1 + (higher k2n terms) dk � (14) 

1 ∞ 

+ 
π 0 

cos(kx) exp(−Nσ2k2/2) [Ncαk
α] dk . 

Now that we have the large-N asymptotics, we must determine for which values of x the 
above is valid. This means we must decide how large x may become before the terms we 
neglected in the above approximations become large relative to the terms we kept. 

The errors made during the first and third approximations were exponentially small in N . 
We will see in Appendix B that the second integral in equation 14 behaves asymptotically 
like N/|x|1+α as |x| → ∞. Thus even if x grows like a power of N , this term still decreases 
like a power of N , i.e. much more slowly than exponential decay. 

The errors made during the second approximation involved discarding integrals of the 
above form with powers of k higher than α. Such integrals are still of the form analyzed 
in Appendix B; asymptotically in x, they behave like exp(−x2/2σ2N)H2n(x/σ

√
N) or like 
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N/|x|β for some β > 1 + α. In either case, they are clearly dominated by the asymptotic 
behavior (discussed above) for the second integral in equation 14. 

Therefore, all discarded terms are small relative to the kept terms in the above approxi­
mations as long as we allow x to grow at most like a polynomial in N . 

B Fβ(z) 

In this appendix, we compute 

Fβ (z) ≡ 
1 ∞ 

cos(wz)e−w2/2 w β dw 
π 0 

in closed form for all non-negative values of β, and we describe its asymptotic behavior. 

B.1 Even-Integral α 

Let β = 2n for some non-negative integer n. Then: 

F2n(z) = 
1 ∞ 

cos(wz)e−w2/2 w 2n dw 
π 0 

=
1 +∞ 

cos(wz)e−w2/2 w 2n dw 
2π −∞ 

(since the integrand is an even function of w) 

=
1 +∞ 

e iwz e−w2/2 w 2n dw 
2π −∞ 

= (since sin(wz)e−w2/2 w 2n is an odd function of w). 

But this is an integral we’ve seen before, and can be expressed in terms of the Hermite 
polynomials H2n(z): 

F2n(z) = 
(−1)n 

H2n(z)e−z2/2 , n a non-negative integer (15) √
2π 

where we are defining H0(z) = 1. Clearly 

2/2F2n(z) ∼ 
(−1)n 

z 2n e−z , z →∞ , n a non-negative integer. (16) √
2π 

| | 

B.2 Odd Integral β 

B.2.1 Dawson’s Integral 

Dawson’s integral is defined by 
x 

D(x) ≡ e−x2 
e t

2 
dt . (17) 

0 
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2 
Clearly f(x) ≡ D(x)ex satisfies the differential equation 

2 
f �(x) = e x . (18) 

From a local analysis of this differential equation (see [1] for generalities, though they don’t 
discuss this example), we can compute an asymptotic expansion for f and thus for D: 

1 1 
D(x) ∼ 

2x 
+

4x
+ · · · , x →∞ . (19) 

3 

B.2.2 Fβ(z) for β an odd integer 

Let β = 2n + 1 for some non-negative integer n. Then: 

F2n+1(z) = 
1 ∞ 

cos(wz)e−w2/2 w 2n+1 dw 
π 0 

=
(−1)n d2n+1 ∞ 

sin(wz)e−w2/2 dw 
π dz2n+1 

0 

(by differentiating under the integral sign) 

iwz =
(−1)n d2n+1 

Im 
∞ 

e e−w2/2 dw 
π dz2n+1 

0 

(by Euler’s formula) 

=
(−1)n d2n+1 

Im e−z2/2 
∞−iz 

e−q2/2 dq
π dz2n+1 

−iz 

(by change of variables: q ≡ w − iz) 

The last integral above can be computed by using complex analysis. We consider a 
rectangular contour in the complex plane going from 0 to R to R − iz to −iz and back to 0 
in the limit as R →∞. The integral along the real axis is 

∞ π 
e−q2/2 dq = . 

20 

The integral along the short segment from R to R − iz goes to 0 like e−R2/2 . By the change 
of variables t ≡ q/i

√
2, the integral along the short segment from −iz to 0 is � 0 � 0 

t2 
e−q2/2 dq = i

√
2 e dt 

−iz −z/
√

2 

z= i
√

2e 
2/2D(z/

√
2) 

where D is the Dawson integral discussed above. Since the integrand has no singularities, 
the integral around the closed contour is 0. Therefore 

z
∞−iz 

e−q2/2 dq = 
π 

+ i
√

2e 
2/2D(z/

√
2) . 

−iz 2 
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Substituting this result into the above asymptotic expression yields


d2n+1 

F2n+1(z) = 
(−1)n

√
2 

D(z/
√

2) , n a non-negative integer. 
π dz2n+1 

(20)


Using the asymptotic expression 19 for D we conclude that 

(−1)n 

F2n+1(z) ∼ −
π 

(2n + 1)!z−(2n+2) , |z| → ∞ , n a non-negative integer. (21) 

B.3 Non-Integral β 

B.3.1 The Parabolic Cylinder Function 

The classical parabolic cylinder function may be defined for parameters ν with Re(ν) > −1 
by 

2 z2/4 
∞ 

e−t2/2 νπ 
Dν (z) ≡ 

π
e 

0 
tν cos(zt − 

2
) dt . (22) 

Using integration by parts, it can be shown that this function satisfies the second-order 
differential equation 

1 x2 

Dν
��(x) + + ν − Dν (x) = 0 . (23) 

2 4 

We can compute the asymptotic behavior of Dν via local analysis of the differential equation: 

Dν (x) ∼ x ν e−x2/4 , x → +∞ . (24) 

See [1] for details. Note that a more customary presentation defines the parabolic cylinder 
function as the unique solution of the differential equation 23 which exhibits the asymptotic 
behavior given by 24. 

When ν is an integer, it can be seen directly from the integral representation 22 that 
Dν (x) is an even function (for even ν) or an odd function (for odd ν) of x. For non-integral 
ν, it can be shown (again using local methods; see [1]) that 

√
2π 

Dν (x) ∼ 
Γ(−ν) 

e x
2/4|x|−ν−1 , x → −∞ . (25) 

It should be clear why we restricted our attention to non-integral ν: the Γ function has 
poles at the negative integers. Also, note that this implies that changing the sign of x in the 
integral 22 dramatically changes the asymptotics. 

It is an unfortunate coincidence that Dawson’s integral and the parabolic cylinder func­
tion are both denoted by D. However, only the cylinder function needs a subscript. 
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B.3.2 Fβ(z) for any non-integral β 

By using the angle-addition formula for cosines, we see that equation 22 may be written 

Dβ(z) = 
2

cos 
βπ 

e z
2/4 

∞ 

e−t2/2tβ cos(zt) dt 
π 2 0 

+ 
2 

sin 
βπ 

e z
2/4 

∞ 

e−t2/2tβ sin(zt) dt . (26) 
π 2 0 

The first term is an even function of z while the second term is an odd function of z, so 

Dβ (z) + Dβ (−z) = 
8

cos 
βπ 

e z
2/4 

∞ 

e−t2/2tβ cos(zt) dt . 
π 2 0 

Then it’s just a matter of algebra to see that 

Fβ (z) = 
1

sec 
βπ 

e−z2/4 [Dβ (z) + Dβ (−z)] , β a positive non-integer. (27) 
8π 2 

It is now clear why this analysis is restricted to non-integral β: when β is an odd integer, 
cos(βπ/2) = 0. 

Now we may apply the asymptotic relations 24 and 25. Clearly the −∞ behavior domi­
nates the +∞ behavior, so 

1 βπ 
Fβ(z) ∼ 

2Γ(−β) 
sec 

2 
|z|−β−1 , |z| → ∞ . 

Using Euler’s reflection formula 
π 

Γ(z)Γ(1 − z) = 
sin(πz) 

and the trigonometric identity sin(x + π) = − sin(x) we get 

Γ(β + 1) βπ 
Fβ(z) ∼ −

2π 
sin(βπ) sec 

2 
|z|−β−1 , |z| → ∞ . 

Finally, applying the double-angle formula for sin gives us 

sin(βπ/2)
Fβ(z) ∼ −

π 
Γ(β + 1)|z|−β−1 , |z| → ∞ , β a positive non-integer. (28) 

Though their derivations were quite different, the final asymptotic expressions for Fβ(z) 
when β is an odd integer and when β is a non-integer are of the same form. Indeed, equation 
28 simplifies to equation 21 if we substitute in an odd integer for β. We may therefore 
consider equation 28 to be the asymptotic expression for Fβ(z) for all non-even-integral β 
(it is clear that, because of the term sin(βπ/2), equation 28 can’t possibly apply when β is 
an even integer): 

sin(βπ/2)
Γ(β + 1) z , z = 2n for any integer n. (29) Fβ(z) ∼ −

π 
| |−β−1 | | → ∞ , β > 0, β �
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