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In this lecture we provide two examples of problems where reasonable models are given by the 
deterministic continuum limit of the discrete random walk through which the problem is naturally 
defined. Once suitably defined, this continuum limit usually takes the form of a partial differential 
equation (hence deterministic). One interesting use of the continuum limit we will see in upcoming 
lectures is to understand the behavior of random walks with boundary conditions. To properly 
incorporate boundary conditions into the calculation of the N -step point mass function of a discrete 
random walk usually introduces complicated combinatorial calculations. On the other hand, it may 
be much simpler to solve a differential equation subject to certain boundary conditions in order to 
answer some questions about the behavior of the random process. However, the applicability of 
this type of approximation has limits as well. We will explore when these approximations are valid 
and useful. 

1 Example 1: Motion of Bacteria with Flagella 

One interesting problem is understanding the motion of E. Coli bacteria. The following is a descrip­
tion of how E. Coli bacteria move through the use of their flagella that appeared in Physics Today 
[2]: “Escherichia coli is a single-celled organism that lives in your gut. It is equipped with a set of 
rotary motors only 45 nm in diameter. each motor drives a long, thin, helical filament that extends 
several cell body lengths out into the external medium. The assemblage of motor and filament is 
called a flagellum. The concerted motion of several flagella enables a cell to swim. A cell can move 
toward regions that it deems more favorable by measuring changes in the concentrations of certain 
chemicals in its environment (mostly nutrients), deciding whether life is getting better or worse, 
and then modulating the direction of rotation of its flagella. Thus, in addition to rotary engines 
and propellers, E. colis standard accessories include particle counters, rate meters, and gear boxes.” 

1.1 A Run-and-Tumble Random Walk 

When all of the motors spinning the flagella spin in the same direction, they wrap around one another 
and all the flagella are bundled. This allows the bacterium to travel long distances (compared to 
its size) in the desired direction and constitutes what is referred to as a “run” mode. On the other 
hand, when the motors reverse direction, flagella break apart from the bundle, and the bacterium 
undergoes small random fluctuations (compared to its size) and enters what is referred to as a 
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“tumble” mode. Thus the motion of a bacterium can be described by alternating periods of running 
and tumbling motion for which a reasonable model could be given by a random walk. 

In biology, the run/tumble motion is usually approximated more crudely as a simple random 
walk, where sudden steps of roughly fixed size (σ2 < ∞) are made at fixed equal time steps τ 
with a possible expected drift (or bias) µ� in a given direction, as described below. In any case, the 
details of the walk are neglected by passing to the continuum limit of a diffusion equation, with an 
additional drift term: 

∂ρ 
+ � (�uρ) = D� 2ρ, (1) 

∂t 
· 

where D = σ2/2dτ and �u = �µ/τ , according to the calculations made in earlier lectures. We have 
seen that the Green function for this equation approximates represents the “central region” of the 
PDF of a single bacterium, and thus cannot be trusted for outliers at large deviations from the 
mean (much farther than σ

√
N). The quality of the approximation is also degraded for early times 

(small N) and large fluctuations (especially diverging higher moments). 
In mathematical terms, a more precise model of the run/tumble motion would be a (non­

separable) continuous-time random walk of the “leaper” variety. We will encounter such models 
later in the class. (See 18.366 Lectures 23 and 26 from 2005 or the book of Hughes.) The idea 
is that the walker moves at constant velocity for a random “waiting time” τ between “turning 
points” where new random direction is chosen. We will see that the crucial aspect to determine the 
scaling of the walk, and the validity of the diffusion equation approximation, is whether the mean 
waiting time �τ� is finite. Recent experiments have shown that the run time PDF has a rather fat 
tail1 , p(τ) ∝ t−3/2, which would imply an infinite mean and invalidate the simple analysis leading 
to the diffusion equation. We will see that fractional derivatives end up replacing normal integer 
derivatives in the continuum limit in such cases. However, here the PDF tail has a cutoff, beyond 
which the probability is effectively zero, so that normal diffusion can be recovered at large enough 
time and length scales. Nevertheless, one should be quite concerned about the validity of continuum 
modeling based on the diffusion equation, especially for small times when not too many steps have 
been taken. 

1.2 Chemotaxis 

The bias in the random walk arises due to the fact that bacteria tend to travel in a specific direction 
determined, for instance, by a food or chemical gradient. This is the phenomenon of “chemotaxis”. 
Of course, the bacteria does not actively “steer” itself, but rather it is programmed to lengthen 
the random time spent in the run mode, if the environment is becoming more favorable. However, 
it still performs occasionaly tumbles, even when it is already climbing a desirable gradient. This 
allows it to explore its environment more globally, and not get stuck in a locally preferred location. 

The chemical attractant itself performs a random walk due to thermal fluctuations (Brownian 
motion). These are quite small and frequent and well described by the continuum limit at the scale 
of the bacteria. Therefore, a simple model of the bacterial drift velocity woudl be to solve a diffusion 
equation for the concentration C of the attracting chemical, and making the drift proportional to 
the concentration gradient, 

∂c 2 = Dc� c, �u = χ�c. (2) 
∂t 

1The experimental data can be fit by the Smirnov density, which we will study in later, as the PDF for the first 
passage time of a normal random walk (or Wiener process). This can be justified by assuming that a large number 
of molecular “switches” must randomly flip to new position to initiate the tumble mode. 
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In general, the coefficient χ(x, t) could depend on position or time, based on how the bacteria react 
to the attractant in different parts of the system. 

More general models of colonies of baceria are also possible to derive from microscopic random 
walk type models. For example, in some cases, the bacteria consume and release chemicals which 
are sensed by other bacteria. This means that an additional reaction-like source term may appear, 
as in the Keller-Segel Model: 

∂ρ 

∂t 
= Dc� 2 c −� · (χρ�c) (3) 

∂c 

∂t 
= Dc�2 c + kρ (4) 

where k is the net production rate of the chemical per bacterium (which can be positive or negative). 
This is a nonlinear system of partial differential equations, which has interesting behavior, such as 
spontaneous pattern formation, typical for reaction-diffusion equations. 

This example shows the power of continuum modeling to give a reasonable and tractable macro­
scopic model when the underlying discrete processes become complicated. Here, we actually have 
interacting random walkers, i.e. the bacteria can “talk” to each other via the diffusing chemical 
signals, which generally leads to nonlinear diffusion. Discrete models of interacting stochastic pro­
cesses commonly arise in statistical physics, and it is generally quite difficult to analyze the models 
rigorously. However, the continuum limit, even if taken only formally, often suffices for many useful 
predictions. 

2 Example 2: Financial Time Series 

In this section, we consider the discrete random walks that arise in the modeling of financial time 
series along with a deterministic continuum limit of one of the two discrete models. In particular, 
we are interested in the modeling the time evolution of some financial quantity such as a stock price 
or interest rate. Much of the discussion is based also on notes from [1]. 

Bachelier (1900) was probably the first to model the stock market using random walks, as 
described in his PhD thesis. The random walk takes N steps each of length τ , with t = Nτ equal to 
the total time required to make N steps. The random walk can be thought of as taking independent 
displacements over the time interval τ . In various markets that are being considered, τ might have 
very different lengths, depending on the cost of trading and the logistical delays involved. One 
way to empirically determine a natural scale for τ is to consider the autocorrelation function of the 
series such as 

E(X(t),X(t + t�)) = exp(−t�/τ) (5) 

In liquid markets such as stock exchanges, the autocorrelation function decays almost entirely after 
20-30 minutes have elapsed, so τ = 10 minutes may be a reasonable time step for a random walk 
modeling a stock price in such a market. 

2.1 Additive Displacements 

Random walks that we have considered so far have additive displacements. Moreover, we have seen 
that CLT type arguments applied to an IID sum for N such displacements characterize the behavior 
of these walks in the central region, while various types of corrections help to understand what is 
happening in the tails. For a financial time series, however, this model has a number of limitations: 
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•	 Non-negativity. Many of the quantities that we may wish to model are non-negative. For 
instance prices of goods on a commodities exchange are non-negative. However, it is quite 
possible that a random walk with additive displacements would take on negative values 

•	 Fluctuations. It is natural that the size of the fluctuations of an asset price are directly related 
to the magnitude of the price. This is, in fact, confirmed by market observation. However, 
the size of the additive displacements does not vary with overall magnitude. 

Both of the above observations suggest that unless we are looking at a very short interval of time, 
a multiplicative displacements model may be more appropriate than an additive displacements one. 

2.2 Multiplicative Displacements 

In previous lectures we have considered processes with additive increments. In this part of the 
lecture, we consider random walks with multiplicative processes and explore some ways of working 
with them. A random walk with multiplicative increments is defined by: 

XN+1 
= YN	 (6) 

XN 

rnOne useful instance of this setup is when YN = e τ where rn is a random variable representing 
the rate of return on some investment (units of 1/time). The mean and standard deviation of rn 

are commonly referred to as the expected rate of return and volatility of XN . The volatility has 
units of inverse square root of time. What is important to notice is that while the increments are 
multiplicative, the logarithm of the random walk is a simple random walk with additive increments. 
In particular, this yields the following identity: 

N
XN

log( ) = rnτ	 (7) 
X0 n=1 

For any N > 0, we define a scaled, mean adjusted random variable ZN by: 

log(XN ) − Nµτ log X
˜

n 

ZN = X0 = 
X0 (8) 

σ
√

Nτ σ
√

Nτ 

where t = Nτ and X̃0 = X0e
µNτ . By the Central Limit Theorem we have that ZN weakly converges 

to the standard normal distribution with PDF: 

φ(Z) = e −Z2/2/
√

2π	 (9) 

in the central region where Z = O(1). This implies that dZ = dx/xσ
√

Nτ . This of course means 
that the limiting distribution of the original process is: 

exp(− log Xn/X̃0 /2σ2Nτ) 
PN (x) = (10) 

x
√

2πNτσ2 

Setting t = Nτ and rewriting the infinitesimal we have that the limiting PDF of X(t) is given by: 

exp(− log Xn/X̃0(t) /2σ2t) 
ρ(X, t) ∼ 

x
√

2πσ2t 
(11) 
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This is the general form of a Log-normal distribution. The moments of X(t) are given by: 

E(Xn = X̃n e n
2σ2t/2 = Xn enµtn2σ2t/2 (12) N ) 0 0 

The first moment here is known as the mean drift. So we have established that a non-liner 
function of a symmetric random walk, which had no drift, yields a random walk with a noise 
induced drift. This change of variable from t = Nτ allows us to consider the diffusion equation 
limit of the previously described random walk. In particular, a standard model of a drifting process 
as the one we described above is give by the following diffusion equation with a drift term: 

∂ρ 
+ ¯

∂ρ 
= Dx2 ∂2ρ 

(13) 
∂t 

µx 
∂x ∂x2 

where µ̄ = µ + σ2/2 and D = σ2/2τ . However, it is important to keep in mind that this approxi­
mation is only good in the central region we previously described. 

This concludes our second example of passing from a discrete random walk to a continuum 
approximation. In the next section, we will explore some of more interesting properties of the 
Log-normal distribution. One striking property is that the Log-normal distribution is not uniquely 
defined by its moments, that is there are (infinitely many) other distributions with the same mo­
ments. 

Fun with the Lognormal Distribution 

In this section, we explore the properties of the Log-normal distribution in a bit more depth. Recall 
the definition of the scaled lognormal density with subtracted mean: 

f0(x) = √
2

1 

πx 
exp 

� 

−(log(x))2/2 
� 

x ≥ 0 

In particular, we are interested in computing the moments of the Log-normal. We use the fact 
that if x is a random variable with the standard normal distribution then by the change of variables 
formula y = exp(x) has the Log-normal distribution. Thus, the moments can be obtained as follows: 

nx −xE[Y n] = E[exp(nx)] = √1

2π 
e e 

2/2dx 

= 
en2/2 

e nx e −(x−n)2/2dx = e n
2/2√

2π 

3.1 Family of distributions with the same moments as the Log-normal 

In this section, we explicitly describe a family of distributions such that every member of this family 
has the same moments as the Log-normal distribution. This counterexample is due to Heyde [4] 
and the discussion below follows that of Durrett [3]. 

For any −1 ≤ a ≤ 1, we define the family of distributions: 

fa(x) = f0(x) (1 + a sin(2π log(x)) 

To show that fa has the same moments as f0 we just need to show that for any r ∈ N: 
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∞ ∞ ∞ 

x rf0(x)dx − x rfa(x)dx = x rf0(x) sin(2π log(x))dx = 0 
0 0 0 

To do this integral we change variables by letting x = exp(s+r). This implies that s = log(x)−r 
and ds = dx/x. Rewriting the integral yields: 

� 

∞ 
� 

∞ 

0 
x rf0(x) sin(2π log(x))dx = √1

2π −∞ 

exp(rs + r 2) exp(−(r + s)2/2) sin(2πs)ds 

1 
� +∞


= √
2π 

exp(r 2/2) 
−∞ 

exp(−s 2/2) sin(2πs)ds = 0


The last equality follows because the integrand is an odd function. 

3.2 Discrete distribution with the same moments as the Log-normal 

To perhaps make the point even more forcefully, we provide an example of a discrete random 
variable that has the same moments as the Log-normal distribution. Let a > 0 and define the 
random variable Ya by: 

P (Ya = ae k) = a( − k) exp(−k2/2)/ca k ∈ Z 

where ca is chosen to make the total probability mass sum to 1. To see that this has the same 
moments as the Log-normal, we multiply the nth moment of Ya by the reciprocal of the nth moment 
of the Log-normal: 

exp(−n 2/2)E(Y n) = exp(−n 2/2) (ae k)a −k exp(−k2/2)/caa 

k 

= a −(k−n) exp(−(k − n)2/2)/ca = 1 
k 
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