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In this lecture, we study the higher­order terms in the Kramers­Moyall expansion for the con­
tinuum approximation, which satisfies a PDE generalizing the diffusion equation, for the long­time 
limit for a random walk with IID steps with finite moments. We show that the coefficients in the 
PDE involve cumulants, not moments (as commonly asserted), if the solution at various orders is to 
produce a valid asympototic expansion. This is done by an iterative method, , justified a posteriori 
by a continuum derivation of the correct Gram­Charlier expansion, as the asymptotic expansion of 
the Green function for the PDE. 

1 Continuum Approximation of the Position of a Random Walk 

As we saw in previous lecture, we can rewrite the Bachelier Equation as a infinite­sum, partial 
differential equation (PDE). Provided that the random walk has IID steps with finite moments, we 
derived that 

∞

PN+1(x)− PN (x) = 
� (−1)n mn ∂

nPN 
. (1) 

n! ∂xn 
n=1 

We now substitute ρ(x, Nτ) for PN (x) (where τ represents the time­step) and divide both sides by 
τ to get 

ρ(x, t + τ)− ρ(x, t) � (−1)nmn ∂
nρ

, 
∞

= (2)
τ n!τ ∂xn 

n=1 

Although real stochastic processes are discrete random walks, we usually care about the long­
time limit of many steps. Examples include Brownian motion (where large particles bounce around 
in a gas) or financial time series. Therefore in Equation 2, we will consider the limit of τ → 0, since 
we are interested in much longer time scales. As shown in the previous lecture, when dealing with 
discrete random walks, strictly speaking, the right thing to do is to consider times t = Nτ=constant 
with N → ∞, focusing on the appropriate length scale, L(t) � σ, much larger than the standard 
deviation of the step size, σ. Here, we will get similar results by fixing x, t and letting τ, σ → 0 
with D2 = σ2/2τ fixed. 

τn ∂nρRecall that ρ(x, t+ τ) can be expanded as ρ(x, t)+ τ ∂ρ + 1τ2 ∂2ρ + 
�∞

∂tn . Thus Equation ∂t 2 ∂t2 n=3 n! 
2 can rewritten as 

∂ρ � τn−1 ∂nρ � (−1)nmn ∂
nρ 

(3) 
∞ ∞

= 
∂t 

+ 
n! ∂tn n!τ ∂xn 

. 
n=2 n=1 
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In the last lecture it was showed that the leading order behavior of Equation 3 was 

∂ρ m1 ∂ρ m2 ∂
2ρ τ ∂2ρ 

(4)
∂t 
∼ − 

τ ∂x 
+

2τ ∂x2 
− 

2 ∂t2 

In this lecture we are going to calculate higher order behavior, so the first step is to expand Equation 
3 to higher order. We find that 

∂ρ m1 ∂ρ m2 ∂
2ρ m3 ∂

3ρ τ ∂2ρ τ2 ∂3ρ ∂4ρ ∂4ρ 
= + O (5)

∂t 
− 

τ ∂x 
+

2τ ∂x2 
−

3!τ ∂x3 
−

2 ∂t2 
− 

3! ∂t3 ∂x4 
,
∂t4 

2 Recursive Substitution in the Kramers­Moyall Expansion 

Our goal is to rewrite the RHS of Equation 5 so that the lower order terms only consist of derivatives 
with respect to x. To do this we will employ recursive substitution. 

τWe begin by differentiating both sides of Equation 5 with respect to t and multiply by 2 , so 
that � � 

τ ∂2ρ m1 ∂ ∂ρ m2 ∂2 ∂ρ τ2 ∂3ρ ∂4ρ ∂4ρ 
= + O (6)

2 ∂t2 
− 

2 ∂x ∂t 
+

4 ∂x2 ∂t 
− 

4 ∂t3 ∂x4 
,
∂t4 

The next step is to substitute ∂ρ 
∂t from Equation 5 into Equation 6 so that Equation 6 becomes 

τ ∂2ρ m1 ∂ m1 ∂ρ m2 ∂
2ρ τ ∂2ρ m2 ∂2 m1 ∂ρ m2 ∂

2ρ τ ∂2ρ 
= . . . 

2 ∂t2 
− 

2 ∂x 
− 

τ ∂x 
+

2τ ∂x2 
−

2 ∂t2 
. . . +

4 ∂x2 
− 

τ ∂x 
+

2τ ∂x2 
−

2 ∂t2 

m3 ∂3 m1 ∂ρ m2 ∂
2ρ τ ∂2ρ τ2 ∂3ρ 

. . . . . . − 
4 ∂t3 

. . . (7)− 
12 ∂x3 

− 
τ ∂x 

+
2τ ∂x2 

− 
2 ∂t2 

Equation 7 can be simplified to 

τ ∂2ρ m2 ∂2ρ m1m2 ∂
3ρ m1 ∂ τ ∂2ρ m1m2 ∂

3ρ τ2 ∂3ρ ∂4ρ ∂4ρ1= (8)
2 ∂t2 2τ ∂x2 

− 
4τ ∂x3 

+
2 ∂x 2 ∂t2 

− 
4τ ∂x3 

− 
4 ∂t3 

+ O 
∂x4 

,
∂t4 

and even further reduced to 
3 ∂3ρτ ∂2ρ m1= 

2 ∂2ρ m1m2 ∂
3ρ 

+ 
m1 τ2 ∂3ρ ∂4ρ ∂4ρ

. (9)
2 ∂t2 2τ ∂x2 

− 
2τ ∂x3 4τ ∂x3 

− 
4 ∂t3 

+ O 
∂x4 

,
∂t4 

by noting that � � 
τ ∂2ρ m2 ∂2ρ ∂3ρ ∂4ρ1 (10)
2 ∂t2 

=
2τ ∂x2 

+ O 
∂x3 

,
∂t4 

. 

What we are effectively doing is pushing the time derivatives to higher order while gaining more x 
derivatives. 

∂We now repeat this process again. We apply the operator τ ∂t on Equation 9 to get 

τ2 ∂
3ρ 2 ∂

2 ∂ρ ∂4ρ ∂4ρ 

∂t3 
= m1 + O . (11)

∂x2 ∂t ∂x4 
,
∂t4 

∂ρ Then we substitute ∂t from Equation 5 into Equation 11 so that Equation 11 becomes 

3 ∂3ρ 
τ2 ∂

3ρ 
= 

m1 ∂4ρ ∂4ρ
. (12)

∂t3 
− 

τ ∂x3 
+ O 

∂x4 
,
∂t4 
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Substituting Equation 12 into Equation 9, we see that Equation 9 can be rewritten as 

3 ∂3ρ 3 ∂3ρτ ∂2ρ m1 ∂4ρ ∂4ρ 
= 

2 ∂2ρ m1m2 ∂
3ρ 

+ 
m1 + 

m1 . (13)
2 ∂t2 2τ ∂x2 

− 
2τ ∂x3 4τ ∂x3 4τ ∂x3 

+ O 
∂x4 

,
∂t4 

Finally the results from Equations 12 and 13 are substituted into Equation 5 to give 

∂ρ m1 ∂ρ m2 ∂
2ρ m3 ∂

3ρ m2 ∂2ρ m1m2 ∂
3ρ m3 ∂3ρ m3 ∂3ρ ∂4ρ ∂4ρ 

+ 1+ 1 +O 
∂t 

= − 
τ ∂x 

+
2τ ∂x2 

− 
6τ ∂x3 

− 
2τ 

1 

∂x2 
− 

2τ ∂x3 2τ ∂x3 6τ ∂x3 ∂x4 
,
∂t4 

(14) 
Collecting terms, we see that � � � � � � 

∂ρ m1 ∂ρ 2 ∂2ρ ∂4ρ ∂4ρ1m3 − 3m1m2 + 2m

∂x3 
+ O 

∂x4 
,
∂t4 

(15)
∂t 

= − 
τ ∂x 

+ 
m2 

2
− 

τ

m1 

∂x2 
− 

6τ 

3 ∂3ρ 

∂ρ which is an equation that relates ∂t to lower order derivatives that are only with respect to x. 
The combinations of moments in Equation 16 are thus more naturally expressed as cumulants 

leading to � � 
∂ρ C1 ∂ρ C2 ∂

2ρ C3 ∂
3ρ ∂4ρ ∂4ρ 

= + O . (16)
∂t 

− 
τ ∂x 

+
2τ ∂x2 

− 
3!τ ∂x3 ∂x4 

,
∂t4 

As we notice the pattern, it seems the higher­order Kramers­Moyall coefficients from the previous 
lecture should be defined in terms of cumulants, not moments: 

˜ = 
Cn (17)Dn 
n!τ 

so that the continuum limit is properly described by the following PDE, 

∂ρ � 
= 

∞

(−1)n ˜ ∂nρ 
(18)Dn

∂t ∂xn 
n=1 

˜Unlike the usual Kramers­Moyall moment expansion (with Dn replaced by Dn = Mn/n!τ), this 
PDE, when truncated at various orders, provides a valid asymptotic approximation of the position 
of the random walk, as we now show. 

3 Gram­Charlier Expansion for the Green Function 

Claim: 
∞

∂ρ � (−1)nCn ∂
nρ 

(19)= 
∂t n!τ ∂xn 

n=1 

where Cn is the nth cumulant. 

We are now going to solve Equation 19 for ρ(x, 0) = δ(x), and demonstrate that ρ(x, t) is the 
same Gram­Charlier expansion we derived before by more rigorous means. First we take the Fourier 
transform of 19 and get 

∞
∂ρ̂

= 
� (−1)nCn(ikn) 

ρ. (20)ˆ
∂t n!τ 

n=1 
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Solving the differential equation leads to “ ” 
kn t n=1ρ̂(k, t) = e 

P∞ (−i
n
)
!

n

τ
Cn 

. (21) 

Next, we note that t/τ = N and ρ(x, Nτ) = PN (x): 
“ ” 

kn N n=1P̂N (k) = e 
P∞ (−i

n
)
!

n

τ
Cn 

. (22) 

By the definition of cumulants, the RHS of Equation 22 is equal to p̂(k)N . Therefore 

P̂N (k) = p̂(k)N (23) 

which is the familiar Fourier transform of Bachelier’s equation, 

PN (x) = p∗N (x) = PN−1 ∗ p(x) (24) 

so we know we have a systematic asymptotic approximation of PN (x) from the solution to the 
modified Kramers­Moyall expansion PDE, Eq (19). As we saw in lectures 3 and 4, the cumulant 
expansion of P̂N (k), upon inverse Fourier transform, produces the Gram­Charlier expansion of 
PN (x), valid in the central region. 

We have seen that the Gram­Charlier expansion is obtained from the solution to the PRE (19) 
for a localized intitial condition, ρ(x, 0) = δ(x). Since the PDE is linear, this is the Green function, 
G(x, t), (for an infinite space) from which a general solution is easily constructed for any initial 
condition, ρ(x, t) = G(x, t) ∗ ρ(x, 0). 

A major advantage of the continuum approximation to the discrete random walk is that the 
PDE can be solved, to the desired order, in more complicated multi­dimensional geometries, where 
discrete methods, such as Fourier transform are not easily applied. It also provides simple analytical 
insights into the final position of the random walk, which do not depend on the details of the step 
distribution, beyond the low­order cumulants. 


