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Lecture 9: Discrete versus Continuous Stochastic Processes 

Scribe: Kwai Hung Henry Lam 

Department of Statistics, Harvard University 

October 14, 2006 

In all the previous lectures we focused on discrete random walks and their central limit theorems 
and corrections. In this lecture we would start discussing the connection between discrete and 
continuous random walks. More specifically, we want to find results as the time spent in each 
step goes infinitesimally small. The approach involves PDE (namely diffusion equation). Its main 
advantages are: 

1. In higher dimensions the analysis of discrete random walks becomes overwhelmingly difficult. 
In contrast its continuous counterpart through PDE remains tractable. 

2. Continuous version is easier to solve for boundary value problems. 

Continuum Approximation to Discrete Random Walks 

Here we discuss how to approximate the PDF of discrete random walks by PDE. The key here is 
to define a function of distance x and time t that is the continuous analog of discrete case where 
the PDF depends on x and step N . We achieve this by letting the time step go small, forming a 
diffusion equation. 

First of all let us consider random walks with IID steps with all moments of the step distribution 
being finite. We have 

N� 
XN = 

n=1 

�xn 

and recall from past lectures that 

P̂N (k) ∼ e Nψ(k) N →∞ as 

N 
�∞ (ik)n 

cn∼ e n=1 n! as k → 0 (1) 

Note that if not all moments of pn exist, then we can only expand the cumulant generating 
function up to a finite number of terms (and with the possibility of fractional power). Another 
important point to note is that the expansion is useful only for the “central region”, and outside 
the region more corrections terms in the expansion may even worsen our approximation, as was 
discussed previously. 
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1.1 The Fokker-Planck Equation 

We introduce the continuous function ρ(x, t), where t = Nτ and τ is the time step, as 

ρ(x,Nτ) = PN (x) 

We also define 
cn

Dn = 
n!τ 

for n ≥ 1. Then from (1) we have 

n=1ρ̂(k, t) ∼ e[
�∞ (ik)nDn]t 

So 
∂ρ̂

∞ ∞
∂nρ

(k, t) ∼ (ik)nDnρ̂(k, t) = (−1)nDn (k, t)
∂t ∂xn 

n=1 n=1 

where the last equality follows from the fact that 

∂nρ 
(k, t) = (−ik)nρ̂(k, t)

∂xn 

Now clearly this is the Fourier transform of the PDE 

∂ρ 
∞

∂nρ 
= (−1)nDn

∂t ∂xn 
n=1 

or 
∂ρ ∂ρ ∂2ρ ∂3ρ ∂4ρ 
∂t 

+ D1 
∂x 

= D2 
∂x2 − D3 

∂x3 + D4 
∂x4 − · · · 

It turns out that only the terms up to second order dominate as t →∞. So we have the PDE 

∂ρ ∂ρ ∂2ρ 
+ D1 = D2

∂t ∂x ∂x2 

One has to be careful about letting t tend to ∞. The existence of a valid PDE holds usually but 
not always. 

Two points to note: 

1. If we put x̃ = x − D1t, and let ρ̃(x̃, t) = ρ(x̃ + D1t, t) = ρ(x, t), then


∂ρ̃ ∂ρ ∂ρ ∂x ∂ρ ∂ρ ∂ρ

(x̃, t) = (x̃ + D1t, t) = + = D1 + 

∂t ∂t ∂x ∂t ∂t ∂x ∂t 

and 
∂ρ ∂ρ ∂ρ ∂ρ̃

∂x
(x, t) = 

∂x
(x̃ − D1t, t) = 

∂x̃
(x̃ − D1t, t) = 

∂x̃
(x̃, t)


So we also have

∂2ρ ∂2ρ̃

(x, t) = (x̃, t)
∂x2 ∂x̃2


Hence we get

∂ρ̃ ∂2ρ̃

= D2
∂t ∂x̃2


which is the undrifted diffusion equation.
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2. Our PN (x) = ρ(x,Nτ ) solves the PDE with the initial value constraint ρ(x, 0) = δ(x). Hence 
the “Central Limit Theorem” gives the Green function G(x, t) for this linear PDE. For the 
general solution where initial condition is ρ(x, 0) = f(x), we have ρ(x, t) = G∗f = ∞ 

G(x− 
x�, t)f(x�)dx�. 

−∞ 

Note that, as in the discrete case, G(x, t) accurately describes PN (x) only in the “central 
region”. i.e. for x where |x − D1t| = O(σ

√
t). 

An advantage of the PDE approach over discrete analysis is that even if there is boundary 
condition, since the distance from any point to the boundary becomes infinitely large (relative to 
scaling) as τ goes to 0, whatever boundary condition will not affect our result too much. In other 
words, the operators of PDE are local. However, the real issue here is whether this PDE approach 
gives us accurate approximation to the discrete problem that we are ultimately facing. 

reflecting
wall

absorbing
wall

random walk path

1.2 Occurrences of Diffusion Equation 

Diffusion equation arises in many areas of physics. One example is Fick’s first and second laws that 
describe the diffusion of particles. The first law states that 

F� = −D2�ρ 

where F� is the diffusion flux, ρ is the concentration of particles and D2 is the diffusion coeffi­
cient (which turns out to be the same D2 as we have defined in the previous context). Then, by 

= D2�

conservation law, we have 

∂ρ 
∂t 

= � · F� = D2�2ρ (2) 

i.e. 
∂ρ 2ρ 
∂t 

which is Fick’s second law. This equation also arises as Fourier’s law, where F becomes heat flux 
and ρ is temperature. 
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n

The first equality in (2) comes from the following. Let 

Q = ρdv 
V 

be the total amount of particles (or heat flow). Then 

∂ρ dQ 
dv = n̂ Fda = − Fdv 

∂t dt 
= − · � · �

V S V 

Letting V 0, we get the stated diffusion equation. →
More generally, we have 

F� = D� 1ρ − D2�ρ + D3�2ρ 

and we get 
∂ρ 
∂t 

+ D� 1 · �ρ = D2�2ρ 

Higher corrections to PDE come from higher derivatives in the corresponding flux law. 

Fat Tail Case 

So far we have focused only on light tail distribution. The case for fat tail distribution is, in fact, 
qualitatively different. Recall in the past lecture that in the fat tail case, i.e. random walk in which 
higher moments of pn(x) are infinite, 

P̂N (k) ∼ e N [
�∞

n=1 
(ik)n cn 

n! +cα|k|α+··· ] as k → 0 and N → ∞ 

where α is not an even integer. 
Now again we let ρ(x, t) = ρ(x, Nτ ) = PN (x), and also 

Dn = 
cn 

n!τ 

and 
Dα = 

cα 

τ 
Then we get 

P̂N (k) ∼ e[
�∞

n=1(ik)nDn+Dα|k|α+··· ]t as k → 0 and N → ∞ 

Hence � � 
∂ρ̂

∞

∂t 
∼ Dn(ik)n + Dα |k| α + · · · ρ̂

n=1 
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From this we get 

∂ρ ∂ρ ∂2ρ ∂3ρ ∂4ρ ∂αρ 
∂t 

+ D1 
∂x 

= D2 
∂x2 − D3 

∂x3 + D4 
∂x4 + · · · − Dα 

∂ |x| α + · · · 

Here 
∂
∂
|x
α

| 
ρ 
α is the Riesz fractional derivative defined by 

∂αρ 
∂ |x| α (k) = − |k| α ρ̂

Explicitly we can write 

∂αρ 
α = 

∞ 

e ikx(− k| α) 
∞ 

e−ikx
� 
ρ(x�)dx� 

dk 
∂ |x| −∞ 

|
−∞ 2π 

Note that this is a nonlocal operator. Therefore, in contrast to the case where every moments are 
finite, we have a nonlocal integral PDE here. The local properties of PDE breaks down, and now 
the approximation to the discrete case is valid only if we have no boundary. 

3 A Note on Scaling 

Take a look again at the Dn we have described before. It is equal to n
c
!
n 
τ . Some books, especially 

those in finance, define Dn in terms of moments instead of cumulants. That is, they define it as mn . n!τ 
These two definitions are in fact the same if we have the right “Central Limit Theorem” scaling. 
We will show this in the one dimension case. The scaling for this case means m1,m2 = O(τ) and 
mn = O(τn/2) for n > 2. In the latter definition we would have 

D1 = lim 
m1 

τ 0 τ→

D2 = lim 
m2 

τ 0 2τ→

and 
Dn = lim 

mn = 0 for n > 2 
τ 0 n!τ→

Now consider the former definition. Since m1 = c1, we have 

D1 = lim 
c1 = lim 

m1 

τ 0 τ τ 0 τ→ →

Also, since m1 = O(τ ), 
2 2c2 m2 − m m2 m m2

D2 = 
τ
lim 

0 2τ 
= 

τ 
lim 

0 2τ 
1 = 

τ 
lim 

0 2τ 
− 
τ 
lim 

0 2τ 
1 = 

τ
lim 

0 2τ→ → → → →

In fact, for all n ≥ 0 we can write 
n

cn = Ak m αi 
ki 

k i=1 

where the sum is over all products such that iαki = n, and Ak are constants. It is now clear that 

lim 
τ →0 

cn 

n!τ 
= 0 

for n > 2. 
Hence the two definitions are the same for all n.
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4 Continuous Stochastic Processes 

The difference between continuous stochastic process and continuum approximation to discrete 
stochastic process must be emphasized. All our previous analysis in this lecture has been on 
continuum approximation. The solution of PDE obtained is thus an approximation to the true 
PDF of the discrete random walk. In contrast, some stochastic processes are itself continuous. One 
example is the Wiener process. One can write it as a stochastic integral 

t 

Z(t) = dZ(t) 
0 

where dZ(t) is a stochastic differential with �dZ� = 0 and dZ2 = dt. The process so defined is 
continuous everywhere but nowhere differentiable almost surely. Intuitively, 

dZ 
= Γ(t) = “white noise” 

dt 

t

Z(t) = Wiener process


