Lecture 10: Applications in Finance

Scribe: Erik Allen (and Martin Z. Bazant)
March 16, 2005

After nine lectures concerning the basic mathematics of randoms walks and the limit of
“normal diffusion”, the next three lectures will deal with some applications of what we have
learned thus far in the field of financial modeling. In this lecture, we address the following
topics:

1. Description of financial time series, including a comparison of normal and lognormal
distributions

2. Derivatives, including discussion of:

(a) Types of derivatives

(b) Derivatives pricing strategies

1 Financial Time Series

We start this section by defining a financial time series as the value of some financial quan-
tity x tracked over time. An example of such a time series is shown in Figure 1, which
was generated assuming lognormal distribution of steps in the random walk (see below for
discussion of this process). x could represent a stock price or interest rate, for example.

Perhaps the first person to model the financial time series as a random walk was Bachelier
(1900) in his PhD thesis. Bachelier describes a random walk, Xy with IID steps where the
time t = N7. The basic time interval, 7, could be thought of as the typical time for
an independent displacement, since for most markets permit autocorrelations, which decay
quickly at the scale 7, e.g.

<XOX(t+T)>~ew (1)
We will consider auto-correlated or “persistent” random walks later in the class. Here, we
simply note that 7 is set by some combination of transaction costs and the ease of transactions
(“liquidity”) in a given market. In very liquid markets, like the US Stock Exchange, auto-
correlations in stock prices are significant for tens of minutes, with positive correlations below
5 minutes and small negative correlations around 10 minutes, and decaying completely by
30 minutes. Therefore, 7 ~ 30 min is a reasonable time step for the random walk in such
a market. (For more analysis of real market data, see the recommended book by Bouchaud
and Potters.)
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Figure 1: Example of possible financial time series.

1.1 Additive Random Displacements

Bachelier described the evolution of financial time series as an additive stochastic process,
i.e. a simple random walk with Xy, = Xy + z,, determined by a sum of IID random
displacements. As previous lectures have demonstrated, such a discrete additive process is
governed by the Central Limit Theorem (in the central region) as N — oo, as long as the
variance is finite. In the limit of infinitessimal steps, where the CLT is always achieved for
any fininte time interval, the additive stochastic process is called “Brownian motion” or a
“normal process” by mathematicians.

For financial time series, it seems there are two problems with the model of an additive
process:

1. Most quantities we wish to model are constrained to have a value greater than zero (e.g.
stock prices or interest rates). The additive stochasitic process has a finite probability
of dropping below zero, thus requiring the introduction of boundary conditions. In
practice, however, most financial time series cannot reach zero for obvious reasons.

2. The size of the fluctuations is usually related to the magnitude of the value of the asset,
while the additive process assumes a fluctuation size independent of the magnitude of
the asset value. Therefore, the random displacements are the same size when the value
is very large, as when it is very small. Intuition (and market observation) suggests
that fluctuations are roughly proportional to the current value.

For a single asset over a short period of time, these problems are not severe, and the additive
process is often an excellent approximation. Over longer periods, however, where the value
makes large changes, a different model is needed.
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1.2  Multiplicative Random Displacements

The problems move motivate modeling financial time series as a multiplicative stochastic
process, where X1 = Xyyny so that Xy = (HnN:1 yn)Xo. Consistent with the notion of a
continuously compounded interest rate, we might express the multiplicative increment as

Yn = €M7 (2)

where r,, is an IID variable describing the rate of return over time 7. For small rates of
return, the equation for y, can be linearized as

Yn = (1 +7,7) (3)

which is analogous to simple interest (not compounded). By recursion, for the multiplicative
increments, Eq. (2), the position of the random walk may be described as

XN = X()@Zi”v:l T (4)
or N
XN
log X, = ; T'nT (5)

Therefore, the logarithm of the value undergoes a simple additive random walk with IID
steps.

We now wish to describe the form of the limiting distribution as N — oo. First, we define
u, the expected rate of return, u, by {r,7) = ur and o, the volatility, o, by Var(r,7) = o*r.
Note that p has units of inverse time, while o has units of inverse square root of time. These
definitions are motivated by the additivity of cumulants in Eq. (5); in particular, we expect
the mean and variance of the return to grow linearly with time (number of steps).

As N — oo, the CLT implies that the scaled random variable, Z, defined as

X
Zn — log 55 — Nt
oV NT

converges to a standard normal random variable with PDF,

—Z2/2

V2r

in the central region, Z = O(1). To convert from Z back to X and t, we account for rescaling,

dX
dZ = ——— 8
XovNT ®)

and define t = N7. The limiting PDF of X (¢) is the given by a “lognormal density”,

e

on(Z) = ¢(Z) = (7)

exp (_1og2 (;éfou)))

X, t) ~
4 ) Xov2rt
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where log Xo(t) = log Xy + pt. In the limit of infinitessimal displacements, where the CLT
implies a lognormal distribution for any finite time interval, the multiplicative stochastic
process is sometimes called “geometric Brownian motion” or a “lognormal process” by math-
ematicians.

Note:A curious feature of the lognormal density is that it is not uniquely defined by its
moments. Feller (recommended reading) points out that the PDF

1
p(z) = m

where |a|] < 1 has moments which do not depend on a, so it has the same moments as
the standard lognormal PDF (a = 0). Therefore, in general, knowing all moments does
not uniquely determine a PDF. Of course, we should expect this from lecture 2, because
knowing all the moments implies a complete knowledge of the Taylor series of the (analytic)
characteristic function, p(k), but the series may have a finite radius of convergence, leaving
p(k) unconstrained farther from the origin.

e~ 192" 2/2(1 4 gsin(27 log(z))) (10)
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Figure 2: Lognormal distribution with X = 1.0 ut = 0.3 and ov/t = 0.5

Figure 2 shows the shape of the lognormal PDF. Note that the distribution is generally
skewed to favor large values more than small values, which may not be desirable (or accurate)
for some quantities like interest rates, but may be reasonable for others, like stock prices, at
least over long times. It turns out that real stock prices are better described by a smooth
crossover from a normal (additive) random walk for small times to a lognormal (multiplica-
tive) random walk for long times. For the typical liquid stock markets, the crossover occurs
at the scale of one month.

The moments are given by

m, = X ()" = XO ¢ n€n202t/2 — Xnen,ut+n2crzt/2 11
0
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In particular, the mean drift is
2
my = Xo(t)e“t+" t/2 (12)

Note that even with zero expected return, g = 0, the first moment is greater than zero,
and there is a general upward drift. This is a result of nonlinearity in the transformation
of the additive return by taking an exponential in Eq. (5), which causes upward random
fluctuations to be larger than downward fluctuations, resulting in a net upward bias or drift.
Since the volatility o is a measure of “noise” (randomness in the return), this kind of bias
is sometimes called a “noise-induced drift”. (See the recommended book by Risken.) Such
upward drift can be inappropriate in many cases, such as interest rates.

2 Derivative Securities

2.1 Definitions

A derivative is defined as a “financial instruments which derives it’s value from some un-
derlying asset or quantity.” In essence, the value of the derivative is slaved to some other
quantity. Derivatives exist for two primary reasons: 1) for speculation and 2) to “hedge”
risk.

There are many types of derivatives. Some of the most common are:

1. Forward contract (obligated contract) on an asset X(t). A forward contract is an
agreement to buy asset X for a price K at a future time T'. For the buyer of a forward
contract (also known as the long position), the payoff of the contract y(X (7)) is simply
the difference between the price of the asset at time T and the agreed purchase price,
i.e. yrona(X(T)) = X(T) — K. For the seller (a.k.a. the short position), the payoff
is simply the reverse, i.e. ysgorr(X(T)) = K — X(T). Note: A futures contract is a
traded forward contract. Note: For more information, see Hall: Futures, Options, and
Deriwvatives Securities.

2. Options. A call option represents the right (rather than the obligation) to buy an asset
X(t) for a price K at time 7. As such, the downside risk to the buyer is limited,
since the option holder may opt out of purchase is the price X (7') is less than K.
The long position payoff is yrona(X (7)) = max(X — K,0), and the short position in
ySHORT(X(T)) = mln(X(T) - K, 0)

A put option is the right to sell an asset X (7') for K.

3. Foreign exchange rate derivatives: The right to exchange two currencies at a predeter-
mined rate at a future time T.

4. Interest Rate derivatives: Three common interest rate derivatives are

(a) “Caps”: creates a ceiling on floating rate interest costs. When market rates move
above the cap rate, the seller pays the purchaser the difference.
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(b) “Swaps”: an agreement to exchange interest payments in a single currency for a
stated time period. Only interest payments are exchanged, not principal.

(c) “Swaptions”: give the holder the right, but not the obligation, to enter into or
cancel a swap agreement at a future date.

Note: Interest rate derivative definitions taken from

http://corporate.bmo.com /rm/intrderiv/interestrate/default.asp

We now turn to the rational theory of pricing derivatives, which is governed by more
easily determined principles than the financial time series for the underlying asset. The
reason is that even if we do not know the dynamics of underlying asset very well, we can still
determine a reasonable price for the derivative, based on correlations between the derivative
and the underlying asset (which are known and given by the payoff function at maturity).

2.2 Bachelier’s Fair Price

Bachelier first proposed that the price, w, of an option should be equal to its expected payoff,
so that the traders are engaging in a “fair game”. By defintion, the price of the option at
time T is given by w(7T) = y(X (7)), so the Bachelier price at time ¢t = 0 is given by:

w(0) = wy =< w >=< y(X) >=e"" < y(X(T) > (13)

Here, we add to Bachelier’s original treatment by including the effect of a nonzero interest
rate, r, which should be used to discount a future payoff to the present. This takes into
account the “time value of money”, where r should be some typical interest rate for a very
safe (ideally “risk free”) investment. The equation above is equivalent to saying that the
value of the derivative at time ¢t = 0 is simply the present value of the future expected value
of the option at time 7.

Although it sounds very reasonable, Bachelier’s price is not really “fair”, because it
neglects correlations between the derivative and the underlying, which could be exploited
by a clever trader. This is most easily illustrated by the case of a forward contract, with a
linear payoff function. Consider a short position of a forward contract, w, with the payoff
described by:

yX)=K-X (14)

and consider the possibility that a trader buys the underlying and shorts the forward. The
total value of the combined portfolio at time 7', u(7), is then given by
u(T)=wT)+ X(T)=K-XT)+X(T)=K (15)

Thus, the value of the total portfolio is independent of fluctuations in X (7"). (We say that the
trader has constructed a perfect “hedge” to eliminate risk in the forward contract. Generally,
auxilliary trading to reduce risk is referred to as “hedging”.) Taking into account the time
value of money, the value of the portfolio at time ¢ = 0 must also be Ke~"?. Thus

u(0) =wy+ Xo = Ke ™ = wy = Ke "' — (16)
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In contrast, if we neglect the possibility of hedging, then the Bachelier price is

wp=e T <y(X(T))>=e"" < K- X(T)>=e" (K- < X(T) >) (17)

There, the forward is only fairly priced in Bachelier’s valuation method in the case of zero
expected “excess return” (over the risk-free rate):

Xo=e"T < X(T) > (18)

In the next lecture, we will show how to account for the possibility of hedging in a rational
theory of pricing derivatives.



