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Lecture 11: Non-linear Diffusion 

Scribe: Lou Odette - American International Group (AIG) 

October 17, 2006 

1 Non-linear Drift 

In the continuum limit the PDF ρ(x, t) for the position x at time t of a single random walker satisfies the 
Fokker-Plank equation (FPE), based on a truncation of the Kramers-Moyal expansion 

∂ ∂ ∂2 

ρ(x, t) + (D1(x, t)ρ(x, t)) = (D2(x, t)ρ(x, t)) (1) 
∂t ∂x ∂x2 

In a system of many non-interacting, independent walkers, the FPE will also describe a macroscopic variable, 
interpreted as the concentration or density of walkers. If the coefficients D1 and D2 depend only on position 
and time, then we have linear diffusion and consequently a linear PDE, which can then be solved with 
familiar linear methods. 

By contrast, if D1 and/or D2 are functions of the probability density (or concentration), then equation (1) 
is non-linear, and the methods of solution are not as familiar. Three examples of a non-linear FPE are 
considered in this lecture, illustrating some methods of solution for problems of this type. All three problems 
are examples where the drift coefficient D1 is a function of the density and the contribution of diffusion is 
de-emphasized relative to the drift. Examples where the diffusion coefficient D2 is a function of concentration 
will be considered in the next lecture. 

1.1 Traffic flow: nonlinear drift but no diffusion 

For this example we start with a continuum model, motivated by our experiences in traffic, but without an 
underlying microscopic model per se. In this case the traffic density along the highway is denoted by ρ(x, t) 
(cars/unit-length). We postulate that a car’s velocity u is a function of the density, and so we denote the 
velocity by u(x, t) = u(ρ) (unit-length/unit-time). The flux (equivalently, flow rate) F for the cars is then 
also a function of the density F (ρ) ≡ u(ρ)ρ (cars/unit-time). 

The number of cars in a fixed stretch of the highway x1 < x < x2 is 

x2 

N = ρ(x, t)dx 
x1 

and the rate of change of the number of cars in that same stretch of the highway is the difference between 
the number per unit time that enter at x1 and the number per unit time that leave at x2, assuming a 
“conservation of cars” condition1 

u(x1, t)ρ(x1, t) − u(x2, t)ρ(x2, t) = − 
x2 ∂(u(x, t)ρ(x, t)) 

dx = − 
x2 ∂F (ρ) 

dx 
∂x ∂x x1 x1 

1Per the title of J.P. Sartre’s play No Exit http://en.wikipedia.org/wiki/No_Exit. This play is the source of Sartre’s 
famous comment about traffic “l’enfer, c’est les autres.” 
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For any arbitrary stretch of highway (x1, x2) the rate of change in the density must balance the divergence 
of the flux, since we’ve assumed no source or sink for cars 

x2 ∂ρ ∂F (ρ)
+ dx = 0 

∂t ∂x x1 

and since the interval (x1, x2) is arbitrary, then everywhere 

∂ρ ∂F 
+ = 0 (2) 

∂t ∂x 

which can also be written by factoring out the derivative of the flux with respect to the density 

∂ρ ∂F ∂ρ ∂ρ ∂ρ 
+ = + c(ρ) = 0 (3) 

∂t ∂ρ ∂x ∂t ∂x 

where we identify c(ρ) = ∂F/∂ρ as a wave velocity. 

Equation (3) is and example of the FPE without a diffusion term, and we can find a solution using the 
method of characteristics (see the Appendix). Two examples are considered in the subsequent sections. 

Traffic Flow Example (1) For the following very simple traffic examples, assume that the velocity is 
linear and decreasing in the density, e.g. of the form u(ρ) = umax(1 − ρ/ρmax) (Figure 1(a)). The flux 
is therefore F (ρ) = ρu(ρ) (Figure 1(b)), and the wave velocity is c(ρ) = dF (ρ)/dρ = umax(1 − 2ρ/ρmax) 
(Figure 1(c)). 

Figure 1: Traffic 
The charts below shows the assumptions for the velocity, flux and wave velocity as a function of traffic density for the subsequent 
traffic problem examples. The parameters umax and ρmax are both assumed to be 1. 
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Along the characteristic lines for equation (3) we have 

dt dx dρ
= 1, = c(ρ), = 0 

dr dr dr 

and assuming the following initial traffic density 

e−αx 

ρ(x, 0) = 1 + 
1 + e−αx 

we can compute the characteristic lines 

2 e−αx 

x(t) = umax 1 − 
ρmax 

1 + 
1 + e−αx 

t + x (4) 
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which are shown in Figure 2(a). 

The initial density can be projected out along the characteristic lines to see how the density evolves over 
time. The result is shown in Figure 2. Since the traffic velocity decreases with density, an initial density 
profile that decreases from left to right means that the cars in front travel faster, so the initial distribution 
will spread out. 

Figure 2: Developing Shocks in the Traffic Problem 
e−αx 

Figure (a) shows the characteristic lines as a function of initial position, assuming initial traffic density ρ(x, 0) = 1 + 
1+e−αx 

where α = 12. The characteristic lines are described by equation (4), and for the given initial density they do not intersect. 
Figures (b), (c), and (d) shows the traffic density over time, at intervals of 0.25 time units. Since the velocity decreases with 
the traffic density, the cars in the back move more slowly than the cars in the front, and the initial density will spread out over 
time. Figure (e) shows the evolution of the traffic density for t ∈ [0, 0.5] and x ∈ [−3, −3]. 
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Traffic Flow Example (2) A quite different behaviour is shown in the next example. Assuming the 
following initial traffic density � 

ρ(x, 0) = 
1, |x| > 1 

(5) 2 − |x|, |x| ≤ 1 

we can again compute the characteristic lines ⎧ � � 

x(t) = 
⎨ umax � 

1 − 2 � 
t + x, |x| > 1ρmax ⎩ 1 − 2 (2−|x|)umax t + x, xρmax 

| | ≤ 1 

but this case the characteristic lines that originate in −1 ≤ x ≤ 0 will intersect at t∗ = 0.5, as illustrated in 
Figure 3(a). 
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Figure 3: Developing Shocks in the Traffic Problem - Initial Triangular Density 
Figure (a) shows the characteristic lines as a function of position for an initial triangular traffic density, as given by equation 
(5). Figures (b), (c), and (d) show the developing shock in the traffic flow, at intervals of 0.25 time units. Since the cars in 
the middle of the initial density travel the slowest, the lower density leading edge pulls away, while the lower density trailing 
edge catches up, eventually forming a shock. The traffic density is shown at three different times. Figure (e) also shows the 
developing shock for t ∈ [0, 0.5] and x ∈ [−3, −3]. 
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Traffic flow: nonlinear drift with diffusion 

A more sophisticated version of the traffic model might model drivers as having a look-ahead capability, 
sensing and responding to the gradient of the car density ahead of them. Presumably the drivers would 
slow down if the density was increasing, and otherwise they would speed up. In this model the traffic flux 
becomes 

∂ρ 
F (ρ) = u(ρ)ρ − D 

∂x 

and the conservation law of equation (2) is then 

∂ρ 
+ 

∂F 
= 0 

∂t ∂x 
∂ρ 
∂t 

+ 
∂u(ρ)ρ 

∂x 
= D 

∂2ρ 
∂x2 

in this case we may have a “diffusive regularization” of any shock, where the diffusive flux component 
counteracts the advection flux. 
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1.2 Fluid Dynamics: non-linear drift 

Another example of macroscopic behaviour based on discrete physical models is a simple model for gas 
dynamics, described by Burgers’ Equation [4] 

∂ρ ∂ρ ∂2ρ 
+ ρ = D (6) 

∂t ∂x ∂x2 

Burgers originally proposed equation (6) as a model for turbulence [2, 3] and it has found application in gas 
dynamics [5, 7] and acoustics [9], among other areas. 

One of the earliest known solutions to Burgers’ equation is the Fourier series solution attributed to Fay ([6]) 

ρ(x, t) = −2D 
∞ sin(nx) 

sinh(nDt)
n=1 

and for Dt � 1 the solution has the characteristic sawtooth profile given by the Fourier series 
∞ sin nx 

x − π = −2 
n

, 0 < x < 2π 
n=1 

The solitary wave solution (for constants p and α) 

ρ(x, t) = −Dp tanh 
p 
2
(x + α) 

can be verified directly. 

The Burger’s equation can be linearized by the Cole-Hopf transformation [5, 7], by defining the solution ρ 
in terms of another function f such that 

ρ = −2D
fx (7) 
f 

to within a constant, then 

fxt fxft =ρt −2D
f 
− 

f2 

ρx = −2D 
f

f 
xx − 

(f
f
x

2 

)2 

ρxx = −2D
fxxx − 3 

fxfxx + 2 
(fx)3 

f f2 f3 

and equation (6) becomes, with a straightforward substitution � � � � � � 
fxt fxft fxx (fx)2 

fxxx fxfxx (fx)3 

−2D
f 
− 

f2 
+ 4D2 f

f 
x 

f 
− 

f2 
= −2D2 

f 
− 3 

f2 
+ 2 

f3 

and with some simplification 

(ffxt − fxft) − 2D fxfxx − 
(fx)3 

= D ffxxx − 3fxfxx + 2 
(fx)3 

f f 

f(ft − Dfxx)x = fx(ft − Dfxx) 

which is true if ft = Dfxx. Thus, solutions to the diffusion equation can be transformed back into a solution 
to Burgers’ equation. For example, the solution for a point source at the origin 

f(x, t) = 
π

e−x 2/4Dt 

Dt 
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yields ρ(x, t) = x/t. Similarly, the solution to the diffusion equation for the sum of two point sources at ±π 
is 

f(x, t) = 

� 
π � 

e−(x−π)2/4Dt + e−(x+π)2/4Dt 
� 

Dt 

yields the solution attributed to Khokhlov ([10]) 

x π πx 
ρ(x, t) = 

t 
− 

t 
tanh 

2Dt 

1.3 Surface Growth 

A model for the evolution of a growing surface is described by the Kardar-Parisi-Zhang equation [8]. In 
the one-dimensional from of this equation, the height of the interface above a horizontal base is denoted 
by h(x, t). The model includes both diffusive motion along the surface, in addition to surface growth in a 
direction normal to the surface. 

In the context of this surface growth problem, we identify the concentration term from the earlier case with 
the variation in surface height with space, i.e. ρ = −∂h/∂x where 

x 

h(x) = ρ(x, t)dx 
x0 

then starting with Burgers’ equation 

∂ρ ∂ρ ∂2ρ 
+ λρ = D 

∂t ∂x ∂x2 

we can differentiate once with respect to x, to give 

∂ ∂h 
� 

∂h 
� � 

∂2ρ 
� 

∂3h − 
∂x ∂t 

+ λ − 
∂x ∂x2 

= −D 
∂x3 

∂ ∂h λ ∂ 
� 

∂ρ 
�2 

∂3h − 
∂x ∂t 

+ 
2 ∂x ∂x 

= −D 
∂x3 

Integrating back over xgives, to within a constant of integration, an equation for the surface height � �2
∂h ∂2h λ ∂ρ 

= D + + F (8) 
∂t ∂x2 2 ∂x 

where we identify F with the deposition flux, D with the surface relaxation coefficient, and h(x, t) with the 
height of the surface. For the choice F = λ + v, corresponding to a constant velocity of the surface, we have � � �2 

� 
∂h ∂2h 1 ∂ρ 

= D + λ 1 + + v (9) 
∂t ∂x2 2 ∂x 

Other algebraic solutions of equation (8) can be found by first solving for ρ(x, t), i.e. solving Burgers’ 
equation. 

KPZ Equation: nonlinear drift but no diffusion 

As in the case of traffic flow, we can first look at solutions to the KPZ equation for cases where there is no 
diffusion, and we consider two cases for the initial condition. In the first case, the initial surface height is 
convex. 
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Convex surface, no diffusion If the initial height is convex and consist of two linear segment, e.g. 

h(x, 0) =	
h0 + αx, x ≤ 0 
h0 + βx, x ≥ 0 

then c(x, t) = −∂h/∂x has initial condition 

c(x, 0) = 
−α, x < 0 
−β, x > 0 

and the characteristic lines are � 

x(t) = 
−λαt + x, x < 0 
−λβt + x, x ≥ 0 

and thus characteristics lines starting from points equidistant from x = 0 do not intersect if the initial surface 
is convex, which in this case means α > β. In this case c(x, t) is ⎧ ⎨ −α, x < −λαt 

x c(x, t) = ⎩ λt , −λαt < x < −λβt 
−β, x > −λβt 

and h(x, t) can be found by integrating ⎧ ⎨ αx + λ 
2 α

2t + (λ + v)t + h0, x < −λαt 
h(x, t) = ⎩ 

−x2/2λt + (λ + v)t + h0, −λαt < x < −λβt 
βx + λ β2t + (λ + v)t + h0, x > −λβt 2 

This case is illustrated in Figure 4(a). 

Figure 4: Non-diffusive solutions to the KPZ Equation 
The following shows the surface growth as described by equation (9) for D = 0, λ = 1, and v = 1. In (a) the initial height 
is described by two linear segments, as described in the text, with parameters α = 1 and β = −0.5. In (b) the initial height 
is described by a linear and parabolic segment, with parameters a = 1, α = 0.5 and β = 1. In each case the figure shows the 
surface height in steps of 0.2 time units, from t = 0. 
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Concave surface, no diffusion If the surface is concave, the characteristic lines will intersect, so the 
solution is different. Consider the initial surface described by a linear segment and a parabolic segment, e.g. 
for some constant a � 

h0 + αa2 − α(x + a)2 , x ≤ 0 
h(x, 0) = 

h0 + βx, x ≥ 0 
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then c(x, t) = −∂h/∂x has initial condition 

c(x, 0) = 
2α(x + a), x < 0 

−β, x > 0 

and the characteristic lines are � 
2λα(x + a)t + x, x < 0 

x(t) = −λβt + x, x ≥ 0 

In this case, if β > −2αa the characteristic lines intersect at the point 

λt 2αa + β 
x∗(t) = 

2 1 + λαt 

so we can write the initial condition for c(x, t) = −∂h/∂x 

2α( x+a ), x < x∗ 

c(x, 0) = 1+2λαt 
−β, x > x∗ 

and then integrating once we have 

(x+a)2 

h(x, t) = −α 1+2λαt + αa2 + (λ + v)t + h0, x < x∗ 

βx + λ β2t + (λ + v)t + h0, x ≥ x∗ 
2 

This case is illustrated in Figure 4(b). 

KPZ Equation: drift and diffusion 

There is a solution to equation (9) consisting of parabolic segments like those considered in the examples, 
e.g. 

h(x, t) = A + (λ + v)t − 
D

λ 
ln(2λt − B) − 

(
2
x

λt 
−
− 
x0

B 
)2 

which can be verified directly. As an alternative, we can use a transformation of the height w(x, t) = 
eλ/2Dh(x, t) with separation of variables to get the solution ⎛ ⎞ 

4Dt + 2
λ
D h0(y) 

h(x, t) = 
2D 

ln ⎝� ∞ e− (x−y)2 

dy⎠ + (λ + v)t (10) 
λ −∞ 

√
4πDt 

This section on the KPZ equation follows the presentation given in ([1]). 

Appendix: Method of Characteristics 

For a quick introduction to the method of characteristics, see (wikipedia http://en.wikipedia.org/wiki/ 
Method_of_characteristics). The general idea is to take a first order PDE and reduce it to two first order 
ODEs, as follows. 

Consider the a quasi-linear PDE with the general form (equation (3) for example) 

A(g, x, t) 
∂g 

+ B(g, x, t) 
∂g 

= C(g, x, t) (11) 
∂t ∂x 

where the initial condition at t = 0 is g(x, 0) = f(x). Equation (11) is of the form 

(A,B, C) (gx, gt, −1) = 0 (12) · 

http://en.wikipedia.org/wiki/
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and since the vector (gx, gt, −1) is normal to the solution surface g(x, t) = z, then by virtue of equation (12) 
the vector (A,B,C) is tangent to the solution surface. Thus for any point satisfying the initial condition, 
we can follow the vector (A,B,C) along the solution surface. The curves generated by following (A,B, C) 
are the characteristic curves. 

The characteristic curves are represented parametrically, one parameter indicating the starting position (per 
the initial condition) and the other marking how far along the characteristic curve we are. In this parametric 
representation 

x = x(r; s) t = t(r; s) g = g(r; s) 

By construction, the tangent to the characteristic curve (i.e. (xr, tr, gr)) is the tangent to the solution (i.e. 
the vector (A,B, C)), so 

xr = A(g, x, t) tr = B(g, x, t) gr = C(g, x, t) 

Since only derivatives in r appear, the solution to the PDE (equation (11)) has been reduced to the solution 
to a system of ODEs, with initial conditions 

s = x(0; s) 0 = t(0; s) f(s) = g(0; s) 
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