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To begin, we consider a basic example of a discrete first passage process. Consider an unbiased 
Bernoulli walk on the integers starting at the origin. We wish to determine the probability, R, that 
the walker eventually returns to 0, regardless of the number of steps it takes. 

Without loss of generality, say the walker’s first step is to 1. From here, the walker can either 
step left to 0 or can return to 1 n times before stepping back to 0. To avoid double counting, we 
must also assert that if the walker comes back to 1 n times, it cannot step left to 0 any of those 
times except the last. Since half of the possible paths from 1 back to 1 stay to the right of 1, 
the probability of returning to 1 exactly once before hitting 0 is R/2. Likewise, the probability of 
returning to 1 n times before stepping back to 0 is (R/2)n . Thus 

1 
∞ 1 

∞ 1 1 1 
R =

2
+ (R/2)n × 

2
= (R/2)n × 

2 
= 

2(1 − R/2) 
= 

2 − R
. 

n=1 n=0 

This means 
R2 − 2R + 1 = 0 = ⇒ (R − 1)2 = 0 

and since probabilities cannot be negative, this means R = 1. In essence, we’ve just deduced that a 
drunk man who wanders away from a pub will eventually return, as long as he is confined to a long 
narrow street. Based on the continuum analysis of the previous lecture, however, he will probably 
not make it back the same day (or the same week), since the expected return time is infinite! 

The preceding simple analysis is not easily generalized to higher dimensions, where the situa­
tion can be quite different, e.g. if the drunk man wanders about in a two-dimensional field. As 
the dimension increases, it makes sense that the walker is less likely to ever find by chance the 
special point where he started. In the next lecture, we will address the effect of dimension in the 
return problem (Polyá’s theorem), but first we will develop a “transform” formalism for discrete 
random walks on a lattice, analogous to the Fourier and Laplace transform methods used earlier 
for continuous displacements. Of course, we could use the same continuum formulation with gen­
eralized functions (like δ(x)) to enforce lattice constraints, but it is simpler to work with discrete 
“generating functions” right from the start. 

Generating Functions on the Integers 

Rather than keeping track of a sequence of discrete probabilities, P (X = n), it is convenient to 
encode the same information in the expansion coefficients, Pn = P (X + n), of the “probability 

∗Based on notes by Ken Kamrin and Kirill Titievsky (2005). 
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generating function” (PGF), defined as 

∞

f(ξ) = Pnξn . 
n=n0 

There are two common cases: 

1. For probabilities defined on all integers, n0 = −∞, the PGF is the analytic continuation of a 
Laurent series 

∞

f(z) = Pnz n 

n=−∞ 

which converges in some annulus in the complex plane, R1 < |z| < R2. The probabilities are 
recovered from the PDF by a contour integral around this annulus once counter clockwise, 

1 f(z)dz)
Pn =	 .

2πi zn+1 

When evaluated on the unit circle, z = eiθ, the Laurent series reduces to a complex Fourier 
series 

∞

f(e iθ) = Pne inθ 

n=−∞ 

which is the discrete analog of our previous Fourier transform in “space”. 

2. For probabilities defined on the non-negative integers, n0 = 0, the PGF is the analytic con­
tinuation of a Taylor series 

∞

f(z) = Pnz n 

n=0 

which converges in a disk in the complex plane, |z| < R. When evaluated on the real axis inside 
the unit disk with z = es(s > 0), the Taylor series resembles a discrete Laplace transform, 

∞

f(e−s) = Pne−sn , 
n=0 

which is the discrete analog of our previous Laplace transform in “time”. 

For an intuitive discussion of generating function and their relation to Fourier and Laplace trans­
forms in the present context see A Guide to First Passage Processes by Sidney Redner (recom­
mended reading). 

For the remainder of this lecture, we will focus on case 2, which has relevance for the return 
problem in one dimension. In this case, similar to the continuous transforms, the PGF has some 
very useful properties: 

•	 f(1) = ∞
n=0 P (X = n) = 1 (by normalization), which implies that the PGF converges inside 

the unit disk, |ξ| < 1. 

•	 All of the moments of the distribution are encoded in the Taylor expansion of the PGF as 
ξ 1− (analogous to the Taylor coefficients of the Fourier transform at the origin). For → �	 �
example, �f �(ξ) = n

∞
=0 P (X = n)nξn−1 = ⇒ f �(1) = n

∞
=0 nP (X = n) = �X�. Similarly, 

f ��(ξ) = ∞
n=0 n(n − 1)ξn−2P (X = n) = �X2� − �X� implying that �X2� = f ��(1) + f �(1). 
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A “discrete convolution theorem” also holds. Suppose Y has probability generating function 
g(ξ). Then the PGF of Z = X + Y is h(ξ) = ∞ P (X + Y = n)ξn = ∞ n P (X = n=0 � � n=0 i=0 
i)P (Y = n − i)ξn . Letting k = n − i we have h(ξ) = ∞ P (X = i) ∞ P (Y = k)ξi+k = i=0 k=0 
f(ξ)g(ξ). 

For example, consider a Poisson distribution with parameter λ: 

P (X = n) = e−λλn/n! 

∞

= f(ξ) = e−λ(λξ)n/n! = e−λ e λξ = e λ(ξ−1).⇒ 
n=0 

We get f(1) = e0 = 1 as we expect and f �(1) = λ = �X�. If we let Y be Poisson with parameter 
µ, we may define the variable Z = X + Y . By the last property we get that the PGF for Z 
is h(ξ) = e(λ+µ)(ξ−1) thus telling us that the sum of two Poisson variables also has a Poisson 
distribution (with parameter λ + µ). 

2 First Passage on a Lattice 

Define Pn(s|s0) as the probability of being at lattice point s after n steps given that the walk started 
at s0. Also, define Fn(s|s0) as the probability of arriving at site s for the first time on the nth step, 
given that the walker begins at s0. One condition we know must hold is 

Pn(s|s0) = 1 
s 

since the walker must be somewhere on the lattice. We may also define 

∞

R(s|s0) = Fn(s|s0) 
n=1 

as the probability that site s is ever reached by a walker starting from site s0. Our initial conditions 
for a walker beginning at s0 are 

P0(s|s0) = δss0 andF0(s|s0) = 0 

where δ is the Kronecker delta function. Use the following notation for the generating functions: 

∞

P (s|s0; ξ) = Pn(s|s0)ξn 

n=0 

∞

F (s|s0; ξ) = Fn(s|s0)ξn . 
n=0 

The odds of a walker reaching s from s0 are the same as the odds of a walker first arriving to s in 
j steps and then returning to s in n − j steps. Thus we can write: 

n

Pn(s s0) = Fj (s s0)Pn−j (s|s)|
j=1 

|
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as long as n ≥ 1. In the case that n = 0, P0(s|s0) = δss0 so altogether we have 

n

Pn(s|s0) = δss0 δn0 + Fj (s|s0)Pn−j (s|s) 
j=1 

By the convolution-like property of PGFs we can now write 

P (s, s0; ξ) = δss0 + F (s|s0; ξ)P (s|s; ξ) 

= ⇒ F (s|s0; ξ) = 
P (s

P

|s0

(s
; ξ

s

)
; 
− 
ξ) 

δss0 . 
|

This is comparable to the result in the continuum case using a Laplace Transform. Using this, we 
can write 

R(s|s0) = 
∞

Fn(s s0) = F (s s0; 1) = 
P (s|s0; 1) − δss0 

n=1 

| |
P (s|s; 1) 

and thus the probability of return is 

1 
R(s0|s0) = 1 − 

P (s|s0; 1) 
. (1) 

3 First Passage Example 

Let us now consider a biased Bernoulli walk on the integers. 

2m 
P2m(0|0) = 

m
p m q m 

where we use 2m because a walk that returns must do so in an even number of steps.


∞ �
2m 

� 

P (0|0; ξ) = 
m

p m q mξ2m 

m=0 

= (1 − 4pqξ2)−1/2 

and hence the probability of return is � 
R(0|0) = 1 − 1 − 4pq� 

= 1 − 1 − 4p(1 − p)� 
= 1 − (2p − 1)2 

= 1 − |2p − 1| 

This result agrees with our first example; just let p = 1/2 and we get R = 1. As p approaches 0 or 
1, the return probability vanishes. 
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4 Pólya’s Theorem 

We will now make use of the above formalism to study Pólya’s theorem. Consider the case of an 
unbiased random walk on a lattice in d dimensions, where the steps have finite variance: |Δx|

< ∞. (In this case, the Central Limit Theorem holds for the position of the random walk 
after many steps.) The return probability has a fascinating dependence on dimension, which was 

=

0,


pointed out by George Pólya (1919, 1921):


1 for d = 1, 2 
R(0|0) = 

R < 1 for d ≥ 3 

Pólya proved this result for the simplest case of nearest-neighbor steps of equal probability on a 
hypercubic lattice (generalizing the Bernoulli walk on the integers), but the result carries over to 
the general case of “normal diffusion” on the lattice, where the CLT applies to the position of the 
walk. (For a detailed discussion of P/’olya’s theorem and a review of recent results, see Chapter 
3.3 of Random Walks and Random Environments by Barry Hughes.) 

Before providing a derivation, we consider an intuitive justification of the theorem. When the 
CLT holds, the random walker visits a sequence of N lattice sites, effectively confined to the “central 
region” of volume, O(Nd/2), or linear dimension, O(

√
N). (As N →∞, it is exponentially unlikely 

to find a walker far outside the central region.) For d = 1 the number of visited sites, N , grows 
faster than the number of accessible sites, 

√
N , so the walker must loop back and forth frequently, 

returning to the origin (and any other visited site) infinitely many times as N →∞. On the other 
hand, for d ≥ 3, the number of accessible sites in the central region grows faster than the number 
of visited sites, so the walker will generally explore fresh sites, without necessarily returning to any 
previously visited site1. This argument also predicts that two dimensions is a borderline case, which 
requires more careful treatment. 

Proof of Pólya’s Theorem 

From equation 1, we see that the walker returns with probability one if and only if P (0|0; 1) = ∞. 
Recall that Bachelier’s equation provides us w PDF for finding the walker at Pn(x x0),|


Pn+1 = p(Δx)Pn(x − Δx) 
Δx 

where x0 = 0. By using a Fourier transform, the convolution is reduced to a product 

P̂n(k) = p̂(k)n . 

The only difference to keep in mind here is that x is restricted to a discrete, periodic lattice, which 
implies that k is restricted to a finite, continuous region called the “first Brillouin zone”. This is an 
elementary cell of periodicity in d-dimensional k-space, associated with the periodicity of the lattice 
in d-dimensional x-space2 . (See the Appendix for a brief discussion of the connection between 
discrete and continuous Fourier transforms.) 

1This argument also explains why the random walk is a fractal of fractal dimension, Df = 2, when embedded in 
any dimension d ≥ 3. 

2Brillouin zones play a central role in solid state physics, which focuses on electronic wave functions and lattice 
vibrations in periodic crystal lattices in three dimensions. To better understand the first Brillouin zone, think of the 
reverse situation for d = 1, which is the familiar case of Fourier series: a continuous periodic function in x, defined 
on one period, has Fourier modes k restricted to a discrete integer lattice, corresponding to sines and cosines of the 
same period in x. 
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The probability generating function for the position is then given by 

∞

P (x 0; z) = Pn(x)z n|
n=0 

∞
dk 

= e ik·x P̂n(k)z n 

(2π)d 
n=0 
∞

dk 
= e ik·x (p̂(k)z)n 

(2π)d 
n=0 

Since the sum is a geometric series3, we obtain 

eik·x dk 
P (x|0; z) = 

1 − p̂(k)z (2π)d 

and thus the return probability is one if and only if 

eik·x dk 
−1 

R(0|0) = 1 − 
1 − p̂(k) (2π)d = 1. 

This is equivalent to asking whether or not the integral diverges. Since the integration is carried 
out over the Brillouin zone (a finite region of k-space around k = 0) the integral can only diverge 
due to singularities, which occur where p̂(k) 1, or k 0. Near k = 0 we have a Taylor expansion → →
of the form 

1 
p̂(k) ≈ 1 − im1 · k − 

2
k · m2 · k + . . . 

and since we are considering an unbiased walk, m1 = 0. m2 is a symmetric matrix, and as such there 
exists an orthogonal matrix O such that OTm2O = D where D is diagonal, and for a non-degenerate 
case, the diagonal elements of D, labeled as di, will all be strictly positive. Let E be the square root 
of D, which is has diagonal elements ei. By making use of the coordinate transformations k = Ov, 
v = E−1l, we can write the integral as � 

eik·x dk 
� 

2eik·x dl 
= 

1 − p̂(k) (2π)d k k + . . . (2π)d · m2 · � 
2eiOv·x dv 

= 
v D v + . . . (2π)d · · 

= 
� 

2eiOE−1l·x |E|−1 dl 
E−1l D E−1l + . . . (2π)d · · 
2 

� 
eiOE−1l·x 

= dl 
|E| (2π)d |l| 2 + . . . 

To explore whether the integral diverges, it suffices to consider integrating only over some ball of 
3The series converges for |z| < 1 since p is a PDF and therefore |p̂(k)| < p̂(0) = 1. The series also converges for 

z| = 1 for k = 0. The exchange of sum and integral is also justified due to the uniform convergence of the geometric 
series, within the disk of convergence. 
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radius � centered at the origin. Near the origin, the exponential is slowly-varying, and hence � 
eiOE−1l·x � 

1 
2 

B(�) l 2 + . . . 
dl ∼ 

l
dl 

| | � �

|
S

| 
(d)wd−1 dw 

2
∼ 

0 w

∼ S(d)w d−3 dw 
0 

where we have made the switch to spherical coordinates, S(d) is the surface area of a d-dimensional 
sphere. It is now clear that the integral converges for d ≥ 3 (0 < R < 1) and diverges for d < 3 
(0 < R < 1) which completes the proof of Pólya’s theorem. 

A Fourier transform on a lattice 

Here, we set out to understand the idea of Brillouin zones and the relationship between discrete 
and continuous Fourier transforms. For a d × d matrix M and a d element vector of integers m, 
products Mm define all points on a lattice. Thus any lattice we consider is related to the lattice 
defined just by the d-dimensional set of integers by a linear transformation. The lattice is periodic, 
with the shape and size of the repeating cell defined by M . 

Suppose we define a discrete probability function, wα for each point xα of the lattice. We can 
define a continuous PDF to represent this function and note its properties: 

f(x) = wαδ(x − xα) 
α 

ikx f̂(k) = wαe 
α � � 

ikMm dk 
f(xβ ) = wα e 

(2π)d 
α � � 

ikm dk 
= wα e 

α 
(2π)d |M | 

Notice, this since m is an integer vector, carrying the integral out over a shifted part of the lattice 
cell – that is, the cube [−π, π]d – makes the integral equal to unit for |m| = and zero otherwise. 
This region in k-space, with the linear transformation of M applied, is called the Brillouin zone. 
Thus, to recover the discrete probability function from the Fourier transform of its continuous 
representation, we need only to restrict the domain of integration to the repeat unit of the cell. If 
we carry out the usual inverse Fourier transform, we would get delta functions back. 

So if we are interested in the PDF on a lattice point, as we were in the derivation of Pólya’s 
theorem, the domain of integration is limited to a finite region of k-space around k = 0. 


