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SUMMARY 

This lecture reviews key results on first passage times from Lecture 17 to examine the probability 
of that a random walker on a lattice returns to his starting point (Polya’s theorem). The Lecture 
also examines a simpler way of obtaining low order moments of the first passage time for continous 
stochastic processes by solving a time-independent PDEs, building on the time-dependent formalism 
of Lecture 16. This method is particularly powerful in complicated geometries in higher dimensions, 
where discrete random walks would be very difficult to analyze. It also easily produces the location 
of the eventual first passage, via an elegant analogy with electrostatics. 

1 First passage on a periodic lattice 

1.1 First passage time 

This section is mainly a review of the last lecture. In class this section was presented as “1-D 
Random Walks,” but the formulas are identical for higher dimensions. 

Consider a random walk with identically distrubuted, independent steps on a periodic lattice 
in d dimensions. The key fact about the lattice is that it is periodic, while its structure is not 
essential. The lattice is not necessarily hypercubic; it may be simple cubic, face-centered cubic, 
body-centered cubic, or any other periodic arrangement of points in d dimensions. 

Our goal is to analyze the random time it takes the walker to return to its starting point. 
Define the following PDFs for a walker that starts at x0 and makes n steps. 

• p(�x) – a walker makes a step �x (independent of x and n). 

• Pn(x x0) – walker is at x (in general, a vector with d components). | 

• Fn(x x0) – the walker is at x for the first time. (Note: this is a PDF for n not x or x0,|
despite the notation.) 

Figure 1 motivates the following formula for Fn: 

n 

Pn(x x0) = Fj (x | x0)Pn−j (x | x) + �n,0�x,x0
| 

j=1 
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Figure 1: The topology of a general path from x0 to x in n steps, which arrives for the first time 
after j < n steps. 

To solve for Fn, we introduce generating functions1, and apply the discrete convolution theorem: 

P (x x0; z) = F (x x0; z)P (x x; z) + �x,x0 

P (x x0; z) − �x,x0F (x | x0; z) = 
|
P (x x; z)| 

Inverting the transform (using the formula for Taylor coefficients), we obtain 

1 dnF (x z0; z) � 
Fn(x x0) = | 

n! dz

|
n � 

z=0 

1.2 Return probability on a lattice 

Without obtaining the complete distribution of the first passage time, we can study the probability 
that the walker will eventually return to the origin (regardless of how long it takes): 

R(x x0) = Fn(x x0) = F (x x0; 1) | || 
n=1 

From our general expression above, we obtain a simple formula for the return probability: 

1 
R(x0 | x0) = 1 − 

P (x0 | x0; 1) 
(1) 

Let us now consider the case of an unbiased random walk on a lattice in d dimensions, where 
the steps have finite variance: ≥�x = 0, x2 < √. (In this case, the Central Limit Theorem holds ∞ ≥ ∞
for the position of the random walk after many steps.) The return probability has a fascinating 
dependence on dimension, which was pointed out by George Pólya (1919, 1921): 

1 for d = 1, 2 
R(0 0) = | 

R < 1 for d ∼ 3 

Generating functions are discrete transforms, introduced in Lecture 17. Here, the sequence of probabilities, P0 , 
P

P1 , P2, . . . is encoded in the power-series coefficients of the generating function, P (z) = Pn z n 

n=0 
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Pólya proved this result for the simplest case of nearest-neighbor steps of equal probability on a 
hypercubic lattice (generalizing the Bernoulli walk on the integers), but the result carries over to 
the general case of “normal diffusion” on the lattice, where the CLT applies to the position of the 
walk. (For a detailed discussion of Pólya’s theorem and a review of recent results, see Hughes, Ch. 
3.3.) 

Before providing a derivation, we consider an intuitive justification of the theorem. When the 
CLT holds, the random walker visits a sequence of N lattice sites, effectively confined to the “central 
region” of volume, O(N d/2 ), or linear dimension, O(

⇒
N ). (As N ≈ √, it is exponentially unlikely 

to find the walker far outside the central region.) For d = 1, the number of visited sites, N grows 
faster than the number of accessible sites, 

⇒
N , so the walker must loop back and forth frequently, 

returning the origin (and any other visited site) infinitely many times as N ≈ √. On the other 
hand, for d ∼ 3, the number of accessible sites in the central region grows faster than the number 
of visited sites, so the walker will generally explore fresh sites, without necessarily returning to any 
previously visited site2 This argument also predicts that two dimensions is a borderline case, which 
requires a more careful treatment. 

1.3 Proof of Pólya’s theorem 

Note that the walker returns with probability one, if and only if P (0 0; 1) = √. Recall that the |
Bachelier’s equation provides us the PDF for finding the walker at Pn(x x0)|

Pn+1(x) = p(�x)Pn(x − �x) 
�x 

where x0 = 0. The convolution is reduced to a product by Fourier transform, as usual: 

P̂n(x) = p̂(k)n 

The only difference to keep in mind here is that x is restricted to a discrete, periodic lattice, which 
implies that k is restricted to a finite, continuous region called the “first Brillouin zone”. This is 
elementary cell of periodicity in d-dimensional k-space, associated with the periodicity of the lattice 
in d-dimensional x-space3 . (See the Appendix for a brief discussion of the connection between 
discrete and continuous Fourier transforms.) 

The probability generating function for the position is then given by 

� 
P (x 0; z) = Pn(x)z n (2)|

n=0 
� � 

� dx 
= e ik·x P̂n(x)z n (3)

(2�)d 
n=0 

� � 
ik·x 

� dx 
= e ( ̂p(k)z)n (4)

(2�)d 
n=0 

2This argument also explains why the random walk is a fractal of fractal dimension, Df 2, when embedded in = 
any dimension d � 3. 

Brillouin zones play a central role in solid state physics, which focuses on electronic wave functions and lattice 
vibrations in periodic crystal lattices in three dimensions. To better understand the first Brillouin zone, think of the 
reverse situation for d = 1, which is the familiar case of Fourier series: A continuous periodic function in x, defined 
on one period, has a Fourier modes k restricted to a discrete integer lattice, corresponding to sines and cosines of the 
same period in x. 
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The sum is easily evaluated, since it is a geometric series4 

� ik·xe dk 
P (x 0; z) = | 

1 − p̂(k)z (2�)d 

The return probability is one, if and only if 



� ik·x �−1 

e dk 
P (0 | 0; z) = 1 − 

1 − p̂(k) (2�)d = 1 

or, equivalently, the integral diverges. Since the integral is carried out over the Brillouin zone – 
a finite region of k-space around k = 0 – the integral can only diverge due to singularities in the 
integral, which occur where hatp(k) ≈ 1, or k ≈ 0. To explore whether the integral diverges, it 
suffices to consider integrating only over some ball of radius π centered at the origin: 

1 dk dk 
1 − p̂(k) (2�)d � 

k m2 k 
B(�) B(�) 

where we have also substituted the Taylor expansion of p̂(k) for an unbiased random walk with 
steps of finite variance: 

1 
p̂(k) � 1 − i m1 k − k m2 · k + 

2 
· · · · 

As discussed in Lecture 2, the moments mk are generally tensors of rank k with dk elements. We 
now make a change of variables u = 

⇒
m2k (and u u = k m2 ·k ) and switch to spherical coordinates: · ·

dk 
� d−1u

= u
2k m k 

� 
u

d−3dk 

B(�) 
· 2 ·

0 0 

It is now clear that the integral converges for d ∼ 3 (R = 1) and diverges for d < 3 (0 < R < 1), 
which completes the proof of Pólya’s theorem. 

2 First passage to a complicated boundary 

2.1 Continuum formulation 

In higher dimensions, it is difficult to analyze discrete random walks in complicated geometries, 
especially when calculating the first passage time. It is much easier to obtain results from a con­
tinuum diffusion formulation in terms of PDEs. In Lecture 16 we derived a formalism to obtain 
the PDF for the time a continuous stochastic process takes to reach an absorbing boundary. The 
random process could be viewed as a continuum approximation of a discrete random walk or as a 
true mathematical stochastic process, as discussed in Lecture 13. 

The calculation is considerably simplified if one only requires the low-order moments of the first 
passage time T n , and not its complete PDF. ≥ ∞

4The series converges for |z| < 1 since p is a PDF and therefore |p̂(k)| < p̂(0) = 1. The series also converges for 
|z| = 1 for k �= 0. The exchange of sum and integral is also justified due to the uniform convergence of the geoemetric 
series, within the disk of convergence. 
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Let S(t) be the survival probability of the walker having not yet reached the absorbing boundary, 

S(t) = P (x, t x0, 0)dx|

so the first passage time PDF is f(t) = −S �(t). Then the moments are given by 

n= t f(t)dt≥T n∞ 
0 

= − tnS�(t)dt 

0 

n � = t S 0 + n tn−1S(t)dt|
0 

The first term may be set equal to zero since S(√) < 0 for S(t) to be a PDF. As an aside, note the 
following simple formula for the mean first passage time: 

T = S(t)dt (5)≥ ∞
0 

We now express the moments as integrals over space, not time: 

≥T n∞ = n tn−1S(t)dt = n tn−1 P (x, t x0, 0)dxdt = n gn−1(x | x0)dx|
0 0 

where 

gn(x | x0) = tnP (x, t x0, 0)dt (6)|
0 

is the nth moment in time of the probability of finding the walker at x, after release from x0. 

2.2 Hierarchy of PDEs for the moments 

Following Lecture 13, we assume that P (x, t x0, 0) satisfies a PDE expressing conservation of |
probability: 

�P 
= LP = = −→ · MP, (7)

�t 
−→ · J 

where L and M are operators, related to the probability current J . The PDE for P (x, t x0, 0)|
is to be solved with boundary conditions, P = 0 on the absorbing boundary (the “target” for first 
passage) and n̂ J = 0 on any reflecting boundary, and initial condition, P (x, 0 x0, 0) = �(x − x0),· |
since the walker is released from x0. 

To be specific, in the case of the Fokker-Planck equation, we have 

J = M P = D1(x, t)P (x, t) −→(D2(x, t)P (x, t)) 

where D1 and D2 are the drift and diffusion coefficients. Recall that the Fokker-Planck equation 
either holds exactly (by definition, for a mathematical “Brownian motion”, or continuous stochastic 
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prcess) or approximately (as a continuum approximation of a discrete random walk, often valid after 
many steps). In the latter case, there are generally corrections, which can be expressed as higher-
order spatial derivatives in J (“modified Kramers-Moyall expansion” from Lectures 9 and 13). 

In the common case of a constant diffusion coefficient and drift in a time-independent external 
potential, ∂(x), the Fokker-Planck operator is indepedent of time: 

J = M P = −µP →∂ − D P→

More generally when the modified Kramers-Moyall coefficients are independent of time, the opera­
tors L and M depend only on space, which we will assume hereafter. 

Starting from a time integral of tn times the PDE and applying integration by parts, we have 

� � 
tn �P 

�t 
dt = tnP | � 

0 − n tn−1P (x, t | x0, 0)dt 

0 
� 
� 

= tnP |� 
0 − L tnPt(x | x0)dt 

0 

The first term vanishes if the nth moment exists, except in the case n = 0, where it yields −�(x−x0 ) 
from the initial condition. In this way, we arrive at a hierarchy of time-independent PDEs for the 
functions gn(x x0):|

L g0(x x0) = −�(x − x0) (8)|

L gn(x x0) = −gn−1(x x0) (9)| |

with the boundary conditions, gn = 0 on the absorbing boundary, and n̂ Jn = 0 on any reflecting ·
boundary, where Jn = M gn. As these PDEs are solved recursively for n ∼ 0, one obtains the first 
passage time moments by integrals: 

T = g0(x x0)dx≥ ∞ |

= 2 g1(x x0)dx≥T 2∞ |

. . . 

= n gn−1(x x0)dx (10)≥T n∞ |

2.3 Electrostatic analogy 

As discussed by Redner (2002), this hierarchy of PDEs has a convenient electrostatic analogy in 
the case of simple diffusion, J = −D P . In that case, g0(x x0) is equivalent to the electrostatic → |
potential of a point charge of magnitude −D−1 at x0, which satisfies Poisson’s equation, 

2 g0 = −D−1�(x − x0) (11)→ 

with boundary conditions representing a conductor (g0 = 0) on the absorbing boundary and an 
insulator (n̂ · →g0 = 0) on the reflecting boundary. The next step is to view −D−1g0(x x0) as the |
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charge density in another Poisson equation, where g1(x x0) now plays the role of the electrostatic |
potential, etc. 

The advantage of this connection is that the well-developed mathematical theory of electrostatics 
can be brought to bear on first passage problems. See Redner’s book for an example involve the 
method images to solve for the first passage time from a point to a sphere, which has applications 
in simulations of diffusion-limited aggregation. The analogous problem of first passage to a plane, 
which has relevance for polymer surface adsorption, appears on the homework. 

In two dimensions, one can also apply conformal mapping to solve for first passage in more 
complicated geometries. In fact, this method applies much more generally than just simple diffusion: 
The probability current can be any “gradient-driven flux density” in the class described by Bazant, 
Proc. Roy. Soc. A 460, 1433 (2004). For first passage problems, this trick was introduced in the 
case of advection-diffusion in a potential flow by Koplik, Redner, and Hinch (1994). 

2.4 Location of the first passage 

The continuum formalism of this section also naturally answers the question of where the first 
passage occurs on the absorbing boundary (regardless of the time it takes). The probability density 
for eventual first passage at an absorbing boundary point xa, which Redner calls the eventual hitting 
probability, can be calculated as follows: 

ˆE (xa) = n J(xa, t)dt· 
0 

ˆ= n M P (xa, t x0, 0)dt· 
0 

| 

ˆ= n · M g0(xa x0)|
ˆ= n J0(xa x0)· | 

where n̂(xa) is the outward normal at xa. The first line follows from the definition of the probability 
current, by integrating the “leakage” of probability at xa over all time, and the last line shows that 
the eventual hitting probability is given by the “normal current” of g0, defined by J0 = M g0 (with 
g0 replacing P ). 

For simple diffusion, this quantity also has an elegant electrostatic analogy. In that case, we 
have J0 = Mg0 = −D→g0, which is proportional to the (normal) “electric field” on the conductor. 

APPENDIX 

(by Kirill Titievsky) 

Fourier transform on a lattice 

Here, we set out to understand the idea of Brillouin zones and the relationship between discrete 
and continuous Fourier transform enough for the proof of Polya’s theorem to make sense. This 
is another way in which continuous and discrete ways of thinking about probability distributions 
differ significantly, but once again, are found to be profoundly related. 

For a d× d matrix M and a d element vector of integers m, products Mm define all points on a 
lattice. Thus, any lattice we consider is the hypercubic one (just the d-dimensional set of integers) 
that has been transformed linearly. The lattice is periodic, with the shape and size of the repeating 
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cell defined by M . By periodic we mean that if there is a lattice point at x, there is also a lattice 
point at M(1, 0, 0) and other values of m that involve only ones. Such definition of lattices should 
cover a broad range of possibilities, but I am not sure it covers all periodic structures. 

Suppose we define a discrete probability function, w� for each point x� of the lattice. We can 
define a continuous PDF to represent this function and note its properties: 

f(x) = w��(x − x�) “continuous” field (12) 

ikx�f̃(k) = w�e continuous FT (13) 

� dk 
f(x�) = w� e ikMm 

(2�)d where Mm = x� + x� (14) 

� dkikm = w� e (15)
(2�|M )d 

Notice, that since m is an integer vector, carrying the integral out over shifted part of the lattice 
cell – that is, the cube [−�, �]d – makes the integral equal to unity for m = 0 and zero otherwise. | |
This region, with the linear transformation of M applied, in k-space is called the Brillouin zone. 
Thus, to recover the discrete probability function from the Fourier transform of its continuous 
representation, we need only to restrict the domain of integration to the repeat unit of the cell! If 
we carry out the usual inverse Fourier transform, we would get the � functions back. 

So if we are interested in the PDF on a lattice point, as we were in the derivation of Polya’s 
theorem, the domain of integration is limited to a finite region of k space around k = 0. 


