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Lecture 23: Continuous­Time Random Walks 

Scribed by: Chris H. Rycroft 

Department of Mathematics, MIT 

February 24, 2005 

In previous lectures, we have restricted ourselves to studying random walks where the waiting 
time between steps is a constant, discrete amount. In this lecture, we will relax this assumption, 
and consider the case when the times between steps can follow a continuous distribution. Such cases 
can often lead to anomalous diffusion, where the width L(t) of the probability density function of 
a walker X(t) scales like tν , where ν is no longer 1 as would be expected from the Central Limit 2 
Theorem, so we begin with a general discussion of when this behavior can arise. 

Anomalous diffusion 

Consider first when ν > 1 
2 ; in that case, we say that a random walker is superdiffusive. The simplest 

model of a superdiffusive process is a Lévy flight: as discussed in lecture 22, this is a random walk 
with IID steps where σ2 = ∞. For example, suppose p(x) ∼ A x −1−α as x →∞, where 0 < α < 2.| | | |
Then if 

1 � � x 
PN (x) = 

N ν φ N ν , 

we have φN (z) → lα,0(z) ∝ z −1−α as |z| → ∞. For the case of α = 2 we still get a gaussian | |
distribution but the scaling goes like 

√
N log N , which is a case of the strong Central Limit Theorem. 

Lévy flights have a number of important applications, such as in modeling financial time series, 
the albatross migration, or polymers (as described in problem set 4). They can also be used to 
describe Brownian motion in gases in cases of high Knudsen number, where the mean free path of 
a particle is large compared to the system size. Consider the case of a gas particle in a channel 
between two parallel plates a distance L apart, and suppose that each time the particle hits the 
wall, it bounces off at a random angle θ, chosen uniformly over the range 0 < θ < π. In the absence 
of any interactions, the horizontal displacement of the particle before it hits the opposing wall is 
x = L cot θ. We see that the probability density function of x is given by 

p(x)dx = p(θ)dθ 

p(x)dx = 
dθ 
π 

p(x)dx = 
Ldx 

L2 + x2 

and thus follows a Cauchy Distribution, l1,0(L, x). Hence after N steps have taken place, the 
horizontal displacement of the particle follows a Cauchy Distribution l1,0(N L, x). Note however 
that this model does not take into account the fact that longer steps will invariably take longer. A 
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more appropriate model may be the Lévy walk, where the time to take a given step is taken into 
account, perhaps by assuming that particle moves at constant velocity. 

If ν < 1 then we call a process subdiffusive; such processes can often occur when we consider 2 
diffusion in a disordered media, when a walker’s path may frequently be blocked. An example is 
DNA electrophoresis in a gel: a strand of DNA is often tangled and trapped in the long chains that 
make up the gel. Subdiffusion can also occur for processes with long trapping times, where the 
expected wait between steps is infinite. 

2 Random waiting times 

To consider a continuous time random walk, we must first develop a mathematical framework for 
handling random waiting times between steps, and since these times must be positive, it is natural 
to make use of the Laplace transform. Let τ be a random variable for the waiting time, with 
probability density function ψ(t). Let N(t) be the random variable for the number of events up to 
time t with probability distribution P(N, t), and define 

∞
Ψ(t) = ψ(s)ds 

t 

to be the probability that an event does not take place before time t. We see that 

t 

P(1, t) = ψ(s)Ψ(t− s)ds = (ψ ∗Ψ)(t) 
0 

and P(N, t) = (ψ∗N ∗Ψ)(t). Taking the Laplace transform gives 

P(N, s) = ψ̃(s)N ˜˜ Ψ(s) = ψ̃(s)N 1 − ψ̃(s) 
. 

s 

Depending on whether the expected waiting time is infinite, we have two different forms for the 
Taylor expansion of this expression as s 0. If ¯→ τ < ∞, then 

τ2 

P̃(N, s) ∼ 1 − τ̄ s+
2 

s 2 − . . . 

from which we can calculate moments of N(t). Alternatively, if τ̄ = ∞, then 

P̃(N, s) ∼ 1 −Asγ 

where 0 < γ < 1. In this case, we can make use of analogs for the Laplace Transform of the 
Tauberian Theorems, originally discussed in lecture 6. For s → 0 and t →∞ we have 

f̃(s) ∼ 1 −Asγ f(t) ∼ Bt−1−γ ⇔

for 0 < γ < 1, and 

˜ At1+β 

f(s) ∼ As−β ⇔ f(t) ∼ 
Γ(β) 

for β > 0. 
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An example of the above for a finite τ̄ is where the waiting times are exponentially distributed 
according to ψ(t) = λe−λt . The Laplace transform of ψ(t) is given by 

ψ̃(s) = 
λ 

s + λ 

and hence �N � 
1 λNλ λ P̃(N, s) = 1 −
 = .

(s + λ)N +1s + λ s + λ s 

This can be inverted; the only contribution to the integral comes from the pole of order N + 1 at 
s = −λ and hence 

st =

dNc+i∞ 

st P̃(N, s)ds = Res(e stP̃, s = 
e−λt(λt)N 

N !

1 

λ) = λNP(N, t) = −e e
2πi dsN 

c−i∞ s=−λ 

which is a Poisson distribution with mean λt = t/τ̄ . For an example when τ̄ is infinite, consider 
the case when ψ(t) ∼ At−1−γ as t → ∞, and 0 < γ < 1. Using the Tauberian Theorem, we know 
that as s → 0, 

ψ̃(s) ∼ 1 −Bs γ . 

¯To obtain the scaling behavior for the expected number of steps, N(t), we make use of 

¯ N(t) = 
∞

NP(N, s) 
n=0 

from which we obtain 

∞

P̃(N, s)N˜̄ N(s) =

N =0 

1 − ψ̃(s)
 ∞

s 
N =0 

ψ̃(s)
= 

s(1 − ψ̃(s)) 
. 

˜̄ ¯Since ψ̃(s) ∼ 1 − Bsγ , we know that N(s) ∼ s−1−γ /B. Hence N(t) ∝ tγ , which scales slower than 
t; this is behavior is often referred to as “fractal” since there is no characteristic time scale. For a 

¯ ¯finite mean, we would have ψ̃(s) ∼ 1 − τ̄(s) and hence N(s) ∼ (¯˜ τs2)−1 giving N(t) ∝ t/τ̄ , which 
does have a characteristic time scale. 

Continuous Time Random Walk 

We now consider the case of a random walker which takes IID displacements from distribution 
p(x), that occur following a waiting time distribution ψ(t). Here we consider the case of a separable 
continuous­time random walk, originally discussed by E. Montroll and G. H. Weiss (1965), where 
the waiting times and the displacements are independent. Such a model is often inappropriate for 
superdiffusion, since long steps are often correlated with longer times, but it can be accurate for 

Nψ̃(s)N=
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many subdiffusive processes, since a long waiting time is often dominant. Let P (x, t) be the PDF 
for the position X at time t, so 

N�(t)

X(t) = xn 

n=1 

which is a random sum of random variables. From Bachelier’s equation we have 

∞

P (x, t) = P (N, t)p(x)∗N , 
N =0 

and taking a Fourier transform in space and a Laplace transform in time gives 

˜ � ∞ ˜ 1 − ψ̃(s)˜P̂ (k, s) = 
∞

P̃(N, s) ̂p(k)N = 
� 1 − ψ(s) P (s)N p̂(k)N = 

s(1 − ψ̃(s)ˆs p(k))
N =0 N =0 

using the fact that |ψ̃p̂ < 1 for a valid PDF. This is the Montroll­Weiss equation, and it will be |
discussed in more detail in later lectures. 


